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Abstract 

 
Currently, numerous automated systems need constant monitoring but require little to no operator 

interaction for prolonged periods, such as unmanned aerial systems, nuclear power plants, and air 

traffic management systems. This combination can potentially lower operators’ workload to 

dangerously low levels, causing boredom, lack of vigilance, fatigue, and performance decrements. As 

more systems are automated and placed under human supervision, this problem will become more 

prevalent in the future. To mitigate the problem through predicting operator performance in low task 

load supervisory domains, a queuing-based discrete event simulation model has been developed.  

To test the validity and robustness of this model, a testbed for single operator decentralized control of 

unmanned vehicles was utilized, simulating a low workload human supervisory control (HSC) 

environment. Using this testbed, operators engaged in a four-hour mission to search, track, and destroy 

simulated targets. Also, a design intervention in the form of cyclical auditory alerts was implemented to 

help operators sustain directed attention during low task load environments. 

The results indicate that the model is able to accurately predict operators’ workload. Also, the model 

predicts operators’ performance reasonably well. However, the inability of the model to account for 

operator error is a limiting factor that lowers model’s accuracy. The results also show that the design 

intervention is not useful for operators who do not have difficulties sustaining attention for prolonged 

periods. The participants of this study were exceptional performers, since most of them had very high 

performance scores.    

Further research will investigate the possibility of conducting another low task load, long duration study 

with a more diverse set of participants to assess the impact of the design intervention and to extract 

personality traits that may affect system performance. Also, the model needs to be revised to take into 

account operator errors, which can significantly affect performance of HSC systems. 

Thesis Supervisor: Mary L. Cummings 
Title: Associate Professor of Aeronautics and Astronautics 
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1. Introduction 
 

1.1 Motivation 

 
In the past century, the degree of automation in human operated systems has been growing 

dramatically. Some of the reasons for this growth include increased profitability and 

productivity, higher reliability and safety, and automation of dangerous and repetitive tasks. 

Although increased automation is advantageous in many situations, it can also have drawbacks. 

Ironies and paradoxes of automation refer to the fact that the more advanced the automation is, 

the more crucial the role of the human operator becomes in successfully monitoring and 

supervising the automated system (Bainbridge, 1983). Another disadvantage of increased 

automation is the fear human operators have of losing their jobs (Rifkin, 1995). Even in the early 

stages of the industrial revolution, a social movement of English textile machine operators, 

known as Luddites, started destroying automated weaving machines, which were thought to 

threaten their job security prospects (Spartacus Educational, 2011).  

Increased automation can also cause boredom and alertness decrements for operators (Langan-

Fox, Sankey, & Canty, 2008). It should come as no surprise that numerous current systems have 

such a high degree of automation that human operators may have little to do for prolonged 

periods. Many of these systems can be classified as supervisory control systems, in which ―one 

or more human operators are intermittently programming and continually receiving information 

from a computer that itself closes an autonomous control loop through artificial effectors and 

sensors to the controlled process or task environment‖ (Sheridan, 1992). For a given system, the 

level of autonomy can vary from manual control to fully automatic. Supervisory control is an 

intermediate step between the two levels and is shown in Figure 1. There are numerous examples 
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of highly automated supervisory control systems causing boredom and alertness decrements. One 

example is the operation of a Predator unmanned aerial vehicle (UAV). In an interview, a 

Predator pilot said, ―Highly skilled, highly trained people can only eat so many peanut M&Ms or 

Doritos or whatnot…There's the 10 percent when it goes hot, when you need to shoot to take out 

a high-value target. And there's the 90 percent of the time that's sheer boredom—12 hours sitting 

on a house trying to stay awake until someone walks out‖ (Button, 2009). In fact, in a recent 

study, 92% of Predator pilots reported moderate to total boredom (Thompson, Lopez, Hickey, 

DaLuz, & Caldwell, 2006). In another example, increased automation in a supervisory control 

system contributed to low alertness of Northwest Airlines flight 188 crew that in 2009 overflew 

Minneapolis-St. Paul International Airport by 150 miles (The New York Times, 2009). 

Besides the aeronautical domain, there are other areas where boredom and the attentiveness of 

operators can be problematic in low task load supervisory settings. An example of such a domain 

is nuclear power plant (NPP) control (Kaku & Trainer, 1992). In describing the everyday 

Figure 1: Depiction of different automation levels. 
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operations of a NPP, an operator said, ―People with experience understand how to transition 

(from low workload to high workload) mostly because you’re waiting for something to go 

wrong. When the occasion comes people are sometimes excited and thrilled that something 

happened.‖ Furthermore, it has been shown that even train engineers (Haga, 1984) and 

anesthesiologists (Weinger, 1999) experience boredom due to lack of stimulation. 

Lack of alertness and boredom, observed in the low task load supervisory domains mentioned 

above, have further implications. It has been shown that boredom may be a factor that causes 

complacency, which can be a significant factor that affects performance in supervisory control 

systems (Prinzel III, DeVries, Freeman, & Mikulka, 2001). Previous studies on air traffic control 

monitoring tasks showed that participants who reported high boredom were more likely to have 

slower reaction times and worse performance than participants reporting low boredom (Kass, 

Vodanovich, Stanny, & Taylor, 2001; Thackray, Powell, Bailey, & Touchstone, 1975). 

Furthermore, a study of U.S. air traffic controllers showed that a high percentage of system 

errors due to controller planning judgments or attention lapses occurred under low traffic 

complexity conditions (Rodgers & Nye, 1993). 

Boredom is closely related to vigilance. In fact, it has been shown that participants of vigilance 

tasks consider these tasks to be boring (Hitchcock, Dember, Warm, Moroney, & See, 1999; 

Scerbo, 1998). Furthermore, performance decrements due to lowered vigilance have been 

documented as early as the 1950s (Mackworth, 1950). 

To evaluate the effects of low and high task load supervisory control environments on operator 

and system performance, human-in-the-loop experiments can be conducted. Through these 

experiments, system designers can evaluate the effectiveness of various design choices. 
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However, with a large solution space in terms of design options, comprehensive experimentation 

can be time-consuming and expensive. This cost can arise from both costs of implementing any 

design changes as well as costs of running the experiments themselves. Moreover, these costs 

can become prohibitive if the aim is not to test a certain design change, but to search for a design 

setting that satisfies a certain output condition (i.e., an optimization process). Moreover, human-

in-the-loop experimentation can be even more complicated for designs of futuristic systems for 

which no actual implementation exists (Nehme, 2009). In such cases, experimentation is 

substituted with approximations from similar systems or must wait for a prototype to first be 

built. 

One alternative to extensive human-in-the-loop experimentation is Modeling and Simulation 

(M&S). Through M&S, designers are able to predict various trends of system operation, the 

impact of different variables on system performance, and the effectiveness of design choices. A 

simplified system engineering diagram (Figure 2) consists of three main stages: (1) requirements 

definition, (2) system design, and (3) system evaluation. The design stage can be extended to 

Figure 2: Requirements, Design, and Evaluation loop (Nehme, 2009). 
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include the M&S loop in order to expedite system’s engineering process as well as reduce costs 

(Nehme, 2009).  

One way to extend the design stage to include prescriptive M&S is presented in this research. 

More specifically, a Discrete Event Simulation (DES) model of a human operator in low task 

load supervisory domains is presented and discussed as an extension of the design stage. The 

model is an extension of a previously-developed DES model that is valid under low task load 

supervisory settings, unlike the previous model, which was not valid under low task load 

conditions. As operators in supervisory domains interact with automation at discrete set of points 

in time, DES models are appropriate for modeling operator performance. Moreover, DES models 

are well-suited to predict operator busyness, number of missed tasks, and delays servicing the 

tasks (Banks, Carson, Nelson, & Nicol, 2005), which are all important metrics in evaluating 

performance of operators of human supervisory systems.  

 

1.2 Research Statement  
 

This research was conducted to answer the following research questions: 

1.  Is it possible to develop a simulation model to successfully replicate and predict operator 

performance in low task load supervisory domains? 

The development of a human performance model for low task load supervisory domains will fill 

the gap that was left by the previous work (Nehme, 2009). Also, the model could be useful in 

designing existing systems and evaluating current ones, as described in Section 1.1. 
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2. Can the model successfully predict the effects of design interventions to mitigate negative 

consequences of low workload on system performance? 

If there are design interventions that can mitigate the negative impact of boredom and vigilance 

decrement and possibly improve performance of human operators in low task load supervisory 

systems, it is desirable to predict the effects of these design interventions using the DES model 

before deciding whether to implement the interventions.  

 

1.3 Thesis Outline 
 

The remainder of this thesis is organized as follows: 

Chapter 2, Background, discusses human attributes that affect performance in low task load, 

supervisory domains. More specifically, the impact of boredom, vigilance decrements, and 

fatigue on performance is presented. Also, results from a previously-conducted boredom study 

are summarized and the inability of a previously-developed model to predict these results is 

discussed. Lastly, a new model is proposed to overcome the deficiencies of the previous model.    

 

Chapter 3, Queuing-Based Low Task Load Discrete Event Simulation Model, introduces the Low 

Task Load DES (LTL-DES) model and describes the advantages of the implemented method. 

Next, various entities of the model are presented, starting with events, service processes, queuing 

policy, and different attention states. The chapter also discusses the integration of the various 

entities described above. Finally, the outputs of the DES model are presented.  
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Chapter 4, Model Validation and Calibration, discusses the validation and calibration process of 

simulation models in general, and the low task load DES model more specifically. A replicative 

validation process is discussed in detail by using a previously-conducted boredom/vigilance 

study. Important trends from this study are extracted and a possible intervention to improve 

system performance in low task load supervisory domains is hypothesized.  

 

Chapter 5, Low Task Load Experiment and Model Predictions, describes the experimental setup 

of the new low task load, long duration experiment, which includes a design intervention to help 

improve operator performance. The findings of the experiment are presented and discussed, 

along with comparison to the predictions of the model and results of predictive validation. 

 

 Chapter 6, Conclusions, describes the motivation for this research, the main findings, accuracy, 

benefits, and limitations of this research. Also, various applications of the model are discussed. 

Additionally, information on how this research has furthered knowledge and contributed to tools 

in modeling human performance in supervisory domains is presented. Finally, future work is 

discussed. 

 

 

 

 



22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

2. Background 
 

This chapter investigates the effect boredom, vigilance, and fatigue have on human performance 

in low task load supervisory domains. The results from a previously-conducted experiment that 

evaluated the impact of low task load settings on human performance are summarized. Finally, 

the modeling efforts of human performance in supervisory settings are discussed. 

 

2.1 Boredom 

As discussed in Chapter 1, boredom is common in low task load supervisory domains. Boredom 

is defined by Merriam-Webster Dictionary (2011) as a state of being weary and restless through 

lack of interest. Although boredom can be formally defined, it is not easy to recognize boredom 

in real life (Svendsen, 2005). Dostoevsky (1997) referred to boredom as bestial and indefinable 

affliction, while Brodsky (1995) stated that boredom represents pure, undiluted time in all its 

redundant, monotonous splendor and argued that life to a large extent is boring, since humanity 

places great emphasis on originality and innovations. Others claimed that they have never been 

bored (Svendsen, 2005). This variability in opinions shows that boredom can be perceived very 

differently by different individuals and the effects of boredom can be different as well. More 

specifically, it has been shown that boredom produces negative effects on morale, quality of 

work, and performance (Thackray, 1980). However, others have argued that boredom plays an 

important role in learning and creativity (Belton & Priyadharshini, 2007). 

In general, it has been suggested that there are two components of boredom: cognitive and 

affective (Stager, Hameluck, & Jubis, 1989). The cognitive component represents a human’s 
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perception of the task, i.e., if the task is considered unimportant, the human becomes cognitively 

disengaged. The affective component represents the human’s emotional perception, i.e., feelings 

of frustration, dissatisfaction, melancholy, and distraction. Not only can boredom cause 

frustration and dissatisfaction, it can also greatly influence human performance. It has been 

suggested that a performance decrement can occur because the human withdraws effort and 

attention resources from a task, even though they are potentially available for performance 

(Scerbo, 1998).  

Boredom has also been classified as either situative or existential (Svendsen, 2005). Situative 

boredom contains a longing for something that is desired and is often considered to be an 

emotion, while existential boredom contains a longing for any desire at all and is considered to 

be a mood (Svendsen, 2005).  Also, while situative boredom is usually expressed via yawning, 

wriggling in one’s chair, and stretching out one’s arms, profound existential boredom is more or 

less devoid of expression. 

 Numerous studies have been conducted to determine the effects of boredom on performance of 

operators of various systems. One study of  air traffic controller (ATC) tasks revealed that under 

low traffic conditions, the percentage of operator errors due to judgments in planning increased 

(Rodgers & Nye, 1993). Additionally, ATC operators who reported high levels of boredom had 

slower reaction times and worse performance compared to operators who reported low levels of 

boredom (Thackray, Powell, Bailey, & Touchstone, 1975). Moreover, boredom has been shown 

to adversely affect performance in reading and mathematics tests (Brown & Carroll, 1984). In 

addition to performance decrements, boredom has also been shown to cause greater anxiety and 

stress (Colligan & Murphy, 1979; Fisher, 1993), as well as premature death due to 

cardiovascular disease (Britton & Shipley, 2010; Ebrahim, 2010). 
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In low task load supervisory domains, the negative effects of boredom can be especially 

devastating, since the majority of these systems rely on the human operator for decisions that are 

hard to automate and require human judgment (Brainbridge, 1987). However, generally human 

operators avoid supervising systems that cause boredom. For example, a boring environment is 

one of a number of causes that the US Air Force struggles to retain enough UAV pilots 

(Cummings, 2008). Also, boring environments cause distraction, which further detaches 

operators from systems they control. For this reason, it is important to identify and measure 

boredom in supervisory settings. The following section describes several methods of measuring 

boredom. 

2.1.1 Measuring Boredom 

To recognize and measure boredom, several methods have been experimentally utilized. In one 

method, a 3D optical flow tracking system was used to track participants’ head positions as they 

watched a series of boring videos. The participants were rated for boredom events by a group of 

judges. Ratings and head position data were combined to predict boredom events (Jacobs et al., 

2009).  

Another study showed the utility of automatically monitoring a student’s posture to track the 

affective states of boredom and high engagement (D'Mello, Chapman, & Graesser, 2007). The 

results indicated that the affective state of high engagement was manifested through heightened 

pressure exerted on a seat. Boredom, in turn, was manifested through an increase in the pressure 

exerted in the back coupled with rapid change in pressure on the seat. 

There are also subjective ways of measuring boredom. The Boredom Proneness Scale (Farmer & 

Sundberg, 1986) is a 28-item survey that measures a person’s propensity to being bored. The 
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authors found strong positive associations with depression, hopelessness, perceived effort, and 

loneliness. Also, the findings indicated negative associations with life satisfaction. 

Other scales measuring boredom include the Boredom Susceptibility Scale (Zuckerman, 1979), 

Leisure Boredom Scale (Iso-Ahola & Weissinger, 1987), Job Boredom Scale (Grubb, 1975), and 

Free Time Boredom Scale (Ragheb & Merydith, 2001), among many others. 

Furthermore, different personality traits and interests of individuals affect boredom proneness, 

and hence, performance. One study showed that participants who self-reported high task-related 

boredom had slower reaction times than participants who reported low task-related boredom 

(Kass, Vodanovich, Stanny, & Taylor, 2001). In another recent study, subjects were asked to 

detect flickers on a screen. Subjects who scored low on the boredom proneness scale 

outperformed people who scored high on the boredom proneness scale and reported less 

boredom (Sawin & Scerbo, 1995). However, it should be emphasized that boredom is subjective 

in nature, since it has been shown that mentally demanding situations can cause boredom 

(Becker, Warm, Dember, & Hancock, 1991; Dittmar, Warm, Dember, & Ricks, 1993; Prinzel III 

& Freeman, 1997; Sawin & Scerbo, 1994; Sawin & Scerbo, 1995), as can monotonous and 

repetitive situations. Monotonous and repetitive tasks are also often described as being vigilance 

tasks, since participants need to maintain continuous alertness to detect the tasks. Vigilance and 

its measurement methods are presented in the following section. 

 

2.2 Vigilance 

Vigilance is defined as ―a state of readiness to detect and respond to certain small changes 

occurring at random time intervals in the environment‖ (Mackworth, 1957). Vigilance 
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decrements over long durations were first demonstrated in an experiment in which observers had 

to monitor movements of a pointer along a circumference of a blank-faced clock (Mackworth, 

1950). The monitoring session lasted two hours and the maximal accuracy decrement occurred 

within just the first 30 minutes. Other studies suggest that not only does the accuracy decrease, 

but the reaction time of obervers also becomes slower as the time spent on the task increases 

(Parasuraman & Davies, 1976).  

Some researchers stated that vigilance decrements occur under conditions of low workload, 

when arousal level is low (Manly, Robertson, Galloway, & Hawkins, 1999; Proctor & Zandt, 

2008; Struss, Shallice, Alexander, & Picton, 1995). However, a recent study showed that 

vigilance tasks can be demanding (Warm, Parasuraman, & Matthews, 2008). More specifically, 

it has been shown that vigilance tasks, rather than being understimulating, are associated with 

high workload. Furthermore, the vigilance decrement was accompanied by a linear increase in 

overall workload (Warm, Dember, & Hancock, 1996). To measure the vigilance decrement over 

time, various techniques were developed, some of which are presented in the follwing section. 

2.2.1 Measuring Vigilance 

Measuring vigilance can be accomplished by utilizing objective, physiological, and subjective 

methods (Langan-Fox, Sankey, & Canty, 2009). Each measurment method has its advantages 

and disadvantages, and one should be careful in choosing the correct method based on the 

specific situation. Objective ways of measuring vigilance are commonly based on objectively 

measured performance metrics such as (1) target detection rate, or hit rate, (2) non-target 

detection rate, or correct rejection rate, (3) failure to detect targets rate, or omission rate, and (4) 

incorrect identification of non-targets as targets rate, or false alarm rate (Stollery, 2006). 
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Operator detection times are also used to measure vigilance decrement over time. Several studies 

on ATC monitoring tasks determined that the time it takes to detect conflict and the frequency of 

missed conflict increases dramatically over the course of just two hours (Schroeder, Touchstone, 

Stern, Stoliarov, & Thackray, 1994; Thackray & Touchstone, 1988). 

Physiological methods of measuring vigilance include electroencephalographic (EEG) power 

spectrum changes (Jung, Makeig, Stensmo, & Sejnowski, 1997), cerebral blood flow (Shaw et 

al., 2009), heart rate fluctuations (Schmidt et al., 2006), galvanic skin response (Chanel, Rebetez, 

Betrancourt, & Pun, 2008), and assessment techniques such as fMRI (Posner et al., 2008). 

Although these methods can provide useful data, their accuracy is questionable, since taking into 

account individual variations and ability to extract signal from noise in the measurements is a 

challenging problem that has not been fully resolved.  

Lastly, it has been shown that several personality dimensions relate to performance efficiency in 

vigilance tasks (Davies & Parasuraman, 1982).  Included in these are introversion-extraversion, 

field dependence-independence, internal-external locus of control, and the Type-A (coronary-

prone) behavior pattern. The findings also indicate that, in general, the performance of 

introverted observers exceeds that of their extraverted cohorts. Furthermore, field-independent 

individuals, characterized by good analytical skills and ability to break down a problem into its 

components, perform better on vigilance tasks than field-dependent observers who are generally 

less anaytical, not attentive to detail, and think globally. Also, individuals with an internal locus 

of control (those who view their life as a result of their actions) perform better on a vigilance task 

than those with an external locus of control (those who believe higher power controls their life). 

Lastly, performance in vigilance tasks of Type-A individuals who are characterized by a rushed, 
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competitive, achievement-oriented lifestyle exceeds that of their more relaxed, Type-B 

counterparts.    

Ultimately, vigilance decrement can be caused by either ―underload‖ or ―overload‖ of operators 

in terms of workload (Pattyn, Neyt, Henderickx, & Soetens, 2008). While underload is 

associated with boredom and attentional withdrawal, overload is associated with cognitive 

fatigue and decrease of attentional capacity due to high mental workload. In low task load 

settings, fatigue is mainly caused by lack of sleep and boredom experienced by operators. The 

next section presents effects of fatigue on operator performance. 

 

2.3 Fatigue   

From a physiological perspective, fatigue is defined as functional organ failure (Berger, 

McCutcheon, Soust, Walker, & Wilkinson, 1991). However, in supervisory domains, it is more 

appropriate to talk about psychological fatigue, which is defined as a state of weariness related to 

reduced motivation (Lee, Hicks, & Nino-Murcia, 1991). Psychological fatigue has been 

associated with stress and other emotional experiences and may accompany depression and 

anxiety (Aaronson et al., 1999). Some researchers have integrated the psychological and 

physiological aspects of fatigue and defined them as the self-recognized state in which an 

individual experiences an overwhelming sustained sense of exhaustion and decreased capacity 

for physical and mental work that is not relieved by rest (Carpenito, 1995) 

In a study that examined boredom and fatigue experienced by Predator UAV operators, it was 

found that operators who reported high boredom levels also had high subjective ratings of 

fatigue. High levels of boredom and fatigue caused slower responsiveness, which resulted in 
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performance decrements. Also, psychological fatigue is strongly correlated with lack of sleep. 

Not surprisingly, operators of the morning shift reported the highest fatigue level, since the 

majority of them expericed sleepiness from early rising (Thompson, Lopez, Hickey, DaLuz, & 

Caldwell, 2006). The study also found that limiting shift work time to only four hours did not 

signifiantly influence fatigue and boredom levels experienced by the operators. Several ways of 

measuing fatigue are presented in the following section. 

2.3.1 Measuring Fatigue 

Traditionally, measuring fatigue has been hindered because it is a symptom and its subjectivity 

presents additional measurement difficulties (Aaronson, et al., 1999). In fact, Muscio (1921) was 

convinced of the uselessness of studies that try measuring fatigue, so he suggested abandoning 

fatigue measurement studies completely. However, in the last few decades several attempts were 

made to measure fatigue. Lee et al. (1991) developed the Visual Analog Scale for Fatigue (VAS-

F). The VAS-F is an 18-item scale that anchors the measure of fatigue to the current 

measurement time. It has multiple items to characterize fatigue as it is presently being 

experienced (e.g., sleepy, fatigued, worn out, energetic, lively). 

The Multidimensional Assessment of Fatigue (MAF), developed by Tack (1991), measures 

subjective fatigue, interference of fatigue with activities of daily living, and subjective distress.  

When measuring fatigue, sleep and depression have been identified as correlates (Aaronson, et 

al., 1999) and can be measured by the Verrad/Snyder-Halpem (VSH) Sleep Scale (Snyder-

Halpern & Verran, 1987) and the Profile of Mood States (McNair, Lorr, & Droppleman, 1992), 

respectively. Other measures of fatigue are McCorkle and Young’s Symptom Distress Scale 

(1978), Rhoten’s Fatigue Scale and Fatigue Observation Checklist (1982), Piper’s Fatigue Self-
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Report Scale (1989),  and Fatigue Severity Scale (Krupp, LaRocca, Muir-Nash, & Steinberg, 

1989).  

To predict operator performance in low task load domains, the various measurement techniques 

presented above can be utilized to gather data on modeling boredom, vigilance, and fatigue. A 

model is defined as a representation of a system for the purpose of studying the system (Banks, 

Carson, Nelson, & Nicol, 2005). Modeling boredom, vigilance, and fatigue is important for 

having an ability to design systems that take into account the effects these factors can have on 

operator performance. Previous research on boredom, vigilance, and fatigue modeling is 

presented in the next section. 

 

2.4 Previous Modeling Efforts 

Modeling the effects of boredom, vigilance decrements, and fatigue on operator performance is 

challenging due to individual behavior differences and the subjective nature of the factors 

affecting performance. In fact, there are not any well-known models relating boredom and 

operator performance. However, a vigilance decrement model has been developed by Wellbrink 

(2004) in which human performance is modeled as a complex adaptive system. More 

specifically, the model utilizes Multiple Resource Theory (Wickens, 2008) and the human 

information processing model (Wickens & Hollands, 2000). An experiment conducted with 50 

students validated the model by reasonably well predicting observed vigilance decrements. The 

simple tasks involved in the experiment were (1) Sternberg memory task, (2) cognitive task of 

computing digits, (3) visual monitoring of a fuel gauge, and (4) clicking an alert button upon 
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hearing auditory alerts. The biggest limitation of the model was its inability to simulate entirely 

new human behaviors that are not combinations of  observed behaviors. 

Fatigue models have been historically more popular and various models have been developed. 

Most of the models take into account operators’ sleep patterns to predict fatigue. One of the most 

popular models, Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE), is presented below, 

while a more complete list of fatigure models is presented in Appendix A. 

The SAFTE model includes sleep reservoir, circadian rhythm, and sleep inertia components that 

combine additively. The model was developed for use in both military and industrial settings and 

current users include the US Air Force and Federal Railroad Administration. Also, the SAFTE 

model has been applied to the construction of a Fatigue Avoidance Scheduling Tool (FAST), 

which is designed to help optimize the operational management of aviation ground and flight 

crews (Hursh et al., 2004). 

These vigilance and fatigue models were analyzed to evaluate the possibility of using them in 

predicting operator performance in low task load supervisory domains. Unfortunately, fatigue 

models are very general, in the sense that these models predict overall operator performance 

decrement given a sleep schedule and taking into account circadian processes and other factors 

that are not specific to low task load domains. Also, fatigue models do not take into account  

specific tasks that operators need to complete, which can vary significantly and can have 

different effects on system performance. 

The agent-based vigilance model (Wellbrink, Zyda, & Hiles, 2004) was developed and validated 

using very simple memory and cognitive tasks, while the majority of human supervisory 
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domains include tasks with various difficulty. Hence, this model was not appropriate in low task 

load supervisory domains. 

Another model, which explicitly takes into account various tasks that operators need to complete 

in supervisory domains was developed to predict the maximum number of heterogeneous 

unmanned vehicles (UVs) controlled by a single operator (Nehme, 2009). It was based on 

queuing theory and was implemented as a Discrete Event Simulation (DES) model. Figure 3 

shows the representation of this model, called the Multiple Unmanned Vehicle Discrete Event 

Simulation (MUV-DES). The attributes that MUV-DES captured were grouped by those related 

to the vehicle team (team structure, role allocation and level of autonomy, and vehicle task 

allocation), environment, and those related to the human operator (nature of operator 

interaction). The model contained all major constructs of DES architecture (events, arrival 

processes for the events, service processes for the events, and queuing policy).  

It is important to note that the MUV-DES model can be easily generalized to be used in other 

human supervisory domains. This can be accomplished by modeling various events of a specific 

Figure 3: A high level representation of a queuing-based DES model. 
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domain with respective arrival processes, as well as service processes and other attributes of 

operator interactions, such as operator inefficiencies. Unfortunately, the model could not be 

validated in this low task load domain, despite the fact that MUV-DES was validated in medium 

and high task load situations (Nehme, 2009; Nehme, Kilgore, & Cummings, 2008; Nehme, 

Mekdeci, Crandall, & Cummings, 2008). Therefore, a new model needed to be developed that 

was valid in low task load supervisory domains. To gather information for the development of a 

new model, the previously conducted low task load, long duration study (Hart, 2010) was 

utilized and is described in the next section 

 

2.5 Previous Long Duration, Low Task Load Experiment 

To quantitatively and qualitatively assess the impact of boredom and vigilance decrement on low 

task load supervisory domains, a long duration experiment was conducted (Hart, 2010). This 

experiment was conducted using a supervisory interface for controlling multiple simulated 

unmanned vehicles (Fisher, 2008). In the experiment, a single operator supervised a group of 

unmanned vehicles in a search, track, and destroy scenario. The operator was assisted by an 

automated planner for scheduling tasks and planning paths for the UVs. The operator had the 

ability to edit, cancel, and approve automation generated schedules through a decision support 

tool. Also, the operator received intelligence information through a chat message window. The 

study lasted four hours, during which participants’ interactions with the interface were logged 

and participants were video-taped. The key findings of the experiement are discussed in the 

following section. 
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2.5.1 Results 

One of the most important findings of the experiment deals with the concept of utilization, which 

is a measure of operator workload. Utilization is defined as percent busy time, where busy refers 

to the time when the operator interacts with the interface. The results of the experiment revealed 

that the participants interacted with the interface much more than they were required. In fact, 

their required utilization was about 2% and the average overall utilization was approximately 

11%. 

Another important finding provided information on operators’ attention states. Over the course 

of the four-hour-long experiment, participants’ attention states were approximated by coding 

their behaviors. Three major attention states were identified: directed, divided, and distracted. 

The analysis revealed that the majority of the time participants were distracted. Figure 4a shows 

that on average participants were distracted 45% of the time, directed 34% of the time, and 

divided only about 21% of the time. Also, over the course of the experiment, participants got 

more distracted and less directed (Figure 4b). It is interesting to note that the fraction of the 

divided attention state was almost constant over the the course of the experiment. This means 

that participants’ multitasking abilities did not change significantly in four hours. Also, the study 

found that the best performers were generally more directed and less distracted than the worst 

performers. The experiment also provided evidence that distraction does not necessarily degrade 

performance if managed properly. Particularly, it was observed that one of the participants was 

able to perform very well by limiting his distraction periods, while on average being distracted 

about 44% of the time. 
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These results were used in the development of a DES model designed to predict operator 

performance in low task load supervisory domains. The next sections highlights the key features 

of the new model.  

 

2.6 New DES Model 

To quantify human performance in low task load domains, a new queuing-based model was 

developed, taking into account MUV-DES architecture. MUV-DES has been shown to yield 

accurate results in medium and high task load supervisory domains. Also, queuing models have 

been successfully utilized in supervisory domains. More specifically, queuing models were used 

to successfully evaluate pilot’s visual behavior when flying a jet airplane (Carbonell, 1966). In 

other studies, queuing models have been used to evaluate the security and efficiency of air traffic 

control systems or flight management tasks (Chu & Rouse, 1979; Schmidt, 1978; Walden & 

Rouse, 1978).  

a. aggregate attention states                                        b. attention management over time 

Figure 4: Attention state information of a previously-conducted experiment (Hart, 2010). 



37 
 

Queuing theory is at the core of DES modeling. A DES simulation is the modeling of a system in 

which the state variable changes only at discrete points in time (Banks, Carson, Nelson, & Nicol, 

2005). DES models are analyzed by numerical methods rather than analytical methods. 

Analytical methods employ the deductive reasoning to solve the model, whereas numerical 

methods employ computational methods to solve mathematical models.  

The new queuing-based low task load model contains all the components of the MUV-DES 

model and also additional components to account for the low task load domains. More 

specifically, the model implicitly takes into account boredom by considering distracted attention 

states caused by boredom. The model utilizes attention states of operators to account for 

boredom effects on operator utilization and performance. Lastly, the model takes into account 

fluctuations in reaction times and task completion times over time, which were observed to vary 

in the previously-conducted low task load study.  

This new model addresses one of the research questions discussed in Chapter 1. More 

specifically, the model aims to replicate and predict operator performance in low task load 

supervisory domains. If successful, the model can be utilized to design and evaluate performance 

of operators in low task load supervisory settings. 

 

2.7 Summary 

This chapter introduced boredom, vigilance, and fatigue as significant factors that impact 

operator performance in low task load supervisory domains and presented ways of measuring 

each of these factors. Since this research is concerned with developing a predictive model of 

operator performance in low task load supervisory domains, the effects of boredom, vigilance, 
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and fatigue cannot be ignored in the development stage of the model. This chapter introduced 

some of the previously-developed vigilance decrement and fatigue models. However, these 

models could not be utilized in low task load situations due to their limitations. Another model 

based on queuing theory was presented, which had been validated in supervisory domains. 

Unfortunately, the model did not prove to be accurate in low task load domains. To extract trends 

to develop a new queuing-based model for low task load domains, a previously conducted long 

duration, low task load study was analyzed. The key findings of the study were discussed, along 

with their consideration in the new model.  

The next chapter presents the new model by thoroughly discussing the different components of 

the model and various operational modes. 
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3. Queuing-Based Low Task Load Discrete Event Simulation Model 
 

In this chapter, a queuing-based Low Task Load Discrete Event Simulation (LTL-DES) model is 

presented. The model can be used to predict the effects that variables, such as task load, level of 

autonomy, and operator characteristics have on system performance. First, an overview of the 

LTL-DES model is presented and the necessary assumptions are explained. Next, different 

constructs of the model are described, which capture different aspects of human supervisory 

systems. The constructs are then integrated into the model and the operation of the complete 

model is presented. Lastly, the output metrics of the model are discussed. 

 

3.1 Overview 
 

The LTL-DES captures various attributes of the specific human supervisory control system 

architecture of interest. These attributes describe both the human operator and the system with 

which the operator is interacting. On the system side, the level of autonomy (LOA) and required 

tasks are captured. On the human side, the nature of operator interaction is modeled by taking 

into account human information processing capabilities, attention allocation strategies, and 

inefficiencies when performing multiple tasks. 

The attributes that describe the human operator and the system are modeled through several DES 

constructs. A high level representation of the LTL-DES model is shown in Figure 5. The central 

construct of the model is the human server (Figure 5, A), which represents the operator. The 

human operator is characterized by the nature of operator interaction (Figure 5, B), which 

encompasses the time needed to interact with tasks, as well as operator attention allocation (the 
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order with which the operator allocates attention to various tasks). The attention allocation 

strategy for various tasks and the attention state of the operator is governed by the human 

operator. The model also captures system-generated events (Figure 5, C), which are tasks that 

need to be completed for successful operation of the system. An example of a system-generated 

event is the creation of a task that required by the system. The type and frequency of these events 

captures the LOA. For example, an automated system with high level of automation will require 

operator intervention infrequently, while a system with low level of automation will need more 

frequent operator interaction. Next, the model takes into account operator-induced events 

(Figure 5, D), which are tasks that are not required by the system, but the operator can choose to 

perform, if desired. Since the automation is not perfect, operator-induced events can improve 

system performance by targeting weaknesses of the automation. However, operators can also 

lower system performance by creating additional events that overwhelm the system with tasks 

that are unnecessary. The system-generated and operator-induced tasks enter the queue (Figure 5, 

E) before they are further processed in the model. Finally, unrelated tasks (Figure 5, F) are the 

Figure 5: A high level representation of the LTL-DES model. 
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human-generated tasks that do not directly relate to the system and are not specifically modeled, 

since these tasks lie outside the scope of the control task at hand. In low task load domains, 

operators resort to these tasks mainly due to boredom that is caused by lack of stimulation and 

often result in distraction.  An example of an unrelated task is the interaction with a personal 

laptop. 

There are several assumptions that the LTL-DES model makes about the human supervisory 

system. In this case, the operator is assumed to act in a supervisory control nature and interacts 

with the system at discrete points in time. For this model, only one operator supervises the 

system, however, it is assumed that the operator can multitask. Also, the system can have 

multiple sub-systems that are supervised simultaneously. 

The LTL-DES contains all major constructs of a DES model, i.e., events, arrival processes for 

the events, service processes for the events, and queuing policy. An additional construct of the 

model captures attention states of human operators. This constant is critical in modeling human-

system performance, particularly in low task load supervisory domains. In the next sections, 

these constructs are presented and their usage in the LTL-DES model is detailed. 

 

3.2 Events 

An event is an instantaneous occurrence that changes the state of a system (Banks, Carson, 

Nelson, & Nicol, 2005). Events depend on the type of the system that is being modeled. For 

example, when modeling a bank teller who is servicing customers, an event can be the arrival of 

a new customer. When modeling a machine shop operation, an event can be the arrival of a new 

part order that has been submitted online. In general, events are classified to be either 
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endogenous or exogenous. The term endogenous is used to characterize events occurring from 

within a system. Since the LTL-DES was initially developed and utilized to model a futuristic 

supervisory system in which a single human operator controls multiple unmanned vehicles, 

examples of different event categories are provided in the context of controlling multiple 

unmanned vehicles. In this scenario, endogenous events arise expectedly due the nature of the 

mission and vehicle capability. An example of such an event is replanning vehicle routes after 

additional tasks have been added. This captures the need for possible rerouting of vehicle paths 

due to added tasks. 

A sub-category of endogenous events is represented by operator-induced events. These events 

represent the operator’s ability to intervene at any point, if desired, to add, delete, or modify 

existing tasks. Examples of operator induced events are re-planning an automatically generated 

path to reach a target faster or adding an additional task that is not required by the system. This 

typically occurs when operators have additional information that is not available to the 

automation but can be important in achieving mission objectives. 

Exogenous events are the environmental events that affect the system. These events arise 

unexpectedly due to environment unpredictability and create the need for operator interaction, 

such as an emergent threat area or a meteorological condition, which requires re-planning vehicle 

trajectories. These are examples of emergent situations that system designers could not account 

for a priori, but are expected given the nature of the UV missions.  

Once the events are defined in the model, the rate of their arrival (i.e., how often the events 

occur) also needs to be defined. The arrival rates of events can be represented by arrival 

processes, described in the next section. 
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3.3 Arrival Processes 

Each event type in the system has an associated arrival process. The arrival process for an event 

type is characterized in terms of inter-arrival times of successive events. Arrivals may occur at 

scheduled times or at random. When the arrival of the event occurs at random times, the inter-

arrival times are described by a probability distribution function (PDF). Each event type can 

have a distinct PDF that describes the arrival process of the specific event type. A typical 

distribution for random arrivals in supervisory control systems is the Poisson arrival process. The 

Poisson distribution has been successfully used to model the arrival of events in diverse domains, 

such as the arrival of phone calls to a call center, arrival of people to restaurants, and the arrival 

of service orders for product repairs, among many others. It is important to note the memoryless 

property of the Poisson process. In simple terms, this property means that the current state of a 

system does not depend on the past states. Mathematically, it can be expressed as: 

                                           (      |   )    (   )                                                (3.1)            

In Equation 3.1,   represents the inter-arrival time of events,   is a random time step and    is a 

random period of time. Moreover, the arrival of events in the Poisson process is assumed to be 

independent. However, in the systems that are being considered in this work, i.e., human 

supervisory systems, arrival of the events is not always independent and cannot be modeled 

using the Poisson distribution. Occasionally, the arrival of an event in the LTL-DES depends on 

the arrival of another event; hence, the memoryless property for probability distributions is not 

true: 

                                           (      |   )    (   )                                                (3.2)  
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Two arrival processes that are implemented in the LTL-DES, independent and dependent, are 

described in the next two sections. 

3.3.1 Independent Arrivals 

The arrival of independent events is not conditioned on the arrival of previously-generated 

events. For such an arrival, the implementation is straight-forward: a random variable,   , 

represents the inter-arrival time between events of type  . Associated with this random variable, a 

probability density function of inter-arrival times,    
( ), is defined. An example of a type of 

event that generally can be modeled as having independent arrivals are environmental 

(exogenous) events, since these events happen in an unpredictable manner and do not depend on 

events that occurred previously.  

3.3.2 Dependent Arrivals 

In contrast to independent arrivals, dependent arrival processes are described by the precondition 

that other events are serviced first.  Dependent events can be classified in two categories: (1) 

events that depend on the same type of event being serviced first and (2) events that are 

conditioned on other types of events. The first type of dependency between events can be 

implemented by using the concept of blocking (Balsamo, Persone, & Onvural, 2001). Blocking 

is used to temporarily stop events from entering the queue before an event of the same type has 

been serviced. Servicing an event removes the block and the dependent event arrives in the 

queue. The time between servicing an event and unblocking the dependent event can be either 

deterministic or stochastic. If it is stochastic, then a probability distribution function,   ( ), can 

be used to describe the delay until unblocking. An example of this type of arrival process in the 
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context of supervising multiple UVs is a replan task that will not be generated unless the 

previous replan task has been completed. 

In the second type of dependency, events of one type are preconditioned on servicing events of 

another type. This conditioning is implemented by triggering the dependent event after the initial 

event has been serviced. Triggering the event generates the event of the second type and can be 

done immediately after servicing the first event, after some fixed time, or can be modeled by 

using a probability distribution function,    ( ). It is possible that the triggering of the event can 

be binary, either occurring or not. In this case, a Bernoulli distribution with probability of    can 

be used to take into account the randomness of triggering the dependent event. An example of a 

triggered dependent arrival process is the approval of a UV destroying a hostile target, which 

triggers the arrival of a target destruction confirmation message from the command center 

supervising the UV mission. 

Arrival processes describe the arrival rates of various event types but do not provide information 

on how long it takes to service these events. Service processes describe the amount of time 

operators need to interact with different event types, discussed in the next section 

 

3.4 Service Processes 

Service processes represent the time that the operator is required to interact with an event. The 

service times can be uniform or of random nature. In the latter case, they are usually 

characterized by a probability distribution function. Each event type   can have its associated 

service distribution,    
( ), which captures the variability of a single operator servicing tasks as 
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well as variability between operators.  Occasionally, service distributions are non-stationary and 

can change over time. For example, when the waiting line in a grocery store is long at peak 

hours, servicing each customer is usually done faster, resulting in a reduction in service times. To 

account for the change in service times over time, the parameters describing service distribution 

can be varied over time. Furthermore, if the variability of service times over time is so large that 

it cannot be accounted for by using the same service distribution, another service distribution can 

be utilized to accurately characterize the variation of service times. The majority of systems do 

not require non-stationary service time distributions to successfully account for the variability of 

the system However, in the LTL-DES, probability distribution functions are non-stationary to 

fully account for the observed behavior of human operators. 

Servicing an event can have a further impact on the state of the system. First, it can unblock 

other events and secondly, it can trigger other events with probability of   . Not servicing an 

event can also have a profound impact on the system, since some of the events that are not 

serviced expire and leave the system without being serviced. This can lower the efficiency and 

performance of any system and, in some cases, can have devastating consequences. For example, 

if the event of refueling a UV is not serviced, then the vehicle will eventually crash. It is also 

possible that an unserviced event can stay in the system and dramatically increase the number of 

events waiting to be serviced.   

 Service processes dictate the amount of time an operator needs to complete a task, but do not 

designate the order in which tasks are serviced. This ordering is identified by the queuing policy, 

described next. 
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3.5 Queuing Policy 

The queue in the DES models represents event storage. As implemented in the LTL-DES, the 

size of the queue is unlimited, i.e., the number of events that can be stored in the queue is 

infinite. The queuing policy defines the order by which the events that are waiting in the queue 

are serviced. There are various queuing policies that can be implemented in a DES model. Some 

examples of policies include first-in-first-out (FIFO), last-in-first-out (LIFO), shortest service 

time first, and highest attribute first, among many others. The FIFO, LIFO, and shortest service 

time first queuing policies are self-explanatory. The highest attribute first represents a policy in 

which the high priority events are serviced first (Pinedo, 2002), and priorities of the events can 

be determined by the designer of the model. A queuing policy that includes a combination of 

several policies can also be implemented; however, the rules for transitioning from one policy to 

another must be clearly defined. Since queuing theory is fundamental to the LTL-DES, the 

queuing notation is presented and the DES model is described using this notation in Appendix B. 

In the LTL-DES, besides the queuing policy and service processes that capture the attributes of 

human interaction with supervisory systems (Figure 5, C), attention states of operators also play 

a critical role by affecting the flow of events. The next section describes operator attention states 

more thoroughly.  

 

3.6 Attention States 

To properly model the behavior of the operator supervising a highly autonomous system in a low 

task load domain, the attention states of the operator are taken into account through the LTL-
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DES. Modeling operators’ attention states is a novel technique utilized in this work. As described 

in Chapter 2, operators’ attention states can be divided into three groups: directed, divided, and 

distracted. In the representation shown in Figure 3.1, different attention states affect the flow of 

events from the queue to the human server. Also, depending on the attention state, the attention 

allocation strategy, which controls the queuing policy, can vary. The operation of the model in 

the three attention states is presented in the following three sections. 

3.6.1 Directed Attention State 

In the directed attention state, system-generated (Figure 5, C) and operator-induced events 

(Figure 5, D) are allowed to reach the human server (Figure 5, A). Simultaneously, on the 

opposite side of the human server, unrelated tasks (Figure 5, F) are blocked. Hence, the human 

operator is not paying attention to unrelated tasks and is only servicing and monitoring tasks 

directly related to the operation of the system. Also, in this attention state, a FIFO queuing policy 

is implemented. This is a good approximation of the order in which operators service tasks in the 

directed attention state, since in low task load conditions, the number of events is low and, if 

directed, operators usually service the events as they see them arriving. In low task load control 

environments, it is rare that more than one event arrives in a very short time frame. However, if 

few events arrive in a short time period, operators usually service these tasks in the order they 

arrive. It is important to note that the LTL-DES model is flexible and allows the queuing policy 

to be changed, if for some reason it is assumed that the operator has another strategy for 

servicing events.  
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3.6.2 Distracted Attention State 

In the distracted attention state, the human operator does not pay attention to the system; 

therefore no system-related events reach the human server (Figure 5, E), resulting in all system-

generated events (Figure 5, A) accumulating in the queue. Some of the events expire and leave 

the queue if the wait time is longer than the time available to complete the task. Also, since the 

operator does not pay attention to the interface, operator-induced events are not generated 

(Figure 5, B). Finally, when the operator switches from a distracted to a directed attention state, 

the queuing policy changes from FIFO to a priority-based queuing policy. The priority-based 

policy stays in effect until all the events that were in the queue at the time of switching are 

serviced. This change in the queuing policy captures the fact that after spending some time in the 

distracted attention state, events accumulate in the queue. It is assumed that when switching to a 

directed attention state, operators service the accumulated events according to a priority-based 

queuing policy, which is defined based on mission specifications. Once all the accumulated 

events are serviced, the queuing policy switches back to FIFO policy, if the operator remains in a 

directed state. 

3.6.3 Divided Attention State 

In the divided attention state, it is assumed that the operator is multitasking. It has been observed 

that most operators in this state do not create any operator-induced events. However, the 

operators service system-generated events, although events wait longer in the queue to be 

serviced due to operator attention inefficiencies, discussed in the next section.  
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3.6.3.1 Wait Times Due to Operator Attention Inefficiencies 

The concept of wait times due to attention inefficiencies (WTAI) has been previously used to 

model the performance of UV operators (Donmez, Nehme, & Cummings, 2010; Nehme, 

Crandall, & Cummings, 2008). WTAI represents the effects of low situation awareness on task 

wait times (Nehme, Crandall, & Cummings, 2008). Previously, it has been used in conjunction 

with the busyness level of operators to account for additional delay in servicing events (Nehme, 

2009). More specifically, it was assumed that the delay is the greatest when the operator is either 

very busy or is almost idle. The wait time is the shortest when the operator is moderately busy. 

The concept of linking the busyness level of operators and WTAI proved to be critical in 

successfully modeling human operators controlling multiple unmanned vehicles (Nehme, 2009).  

However, in low task load domains, the busyness level is low to start with and does not vary 

significantly; hence, conditioning WTAI on the busyness level is not viable. Fortunately, it has 

been observed from the experiment described in Chapter 2 that in low task load domains, WTAI 

is related to the time that the operator spends supervising a system. Specifically, in that low task 

load experiment (Hart, 2010), the wait time of events was the shortest in the beginning and in the 

end of the experiment. Based on this observation, it was assumed that in the divided attention 

state, WTAI can be represented as an inverted U-shaped function that is related to the time of 

experiment. Figure 6 demonstrates this relationship, which is modeled by using a parabolic 

function, where   is the duration of the experiment and    and    are the minimum and 

maximum durations of wait times, respectively. It is also assumed that WTAI is zero in the 

directed attention state, since the operator is engaged in monitoring the system and attention 

inefficiencies are negligible. Lastly, in a distracted attention state, events are not serviced; hence, 

the wait time of events grows in accordance to the time spent in the distracted attention state. 
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An important step in developing a valid model is to successfully integrate the various 

components described above. The next section presents the integration process with emphasis on 

the low task load experiment discussed in the previous chapter.  

 

3.7 Integrating Model Components 

In the LTL-DES, different constructs of the model are integrated in such a way so that the model 

captures different attributes of human supervisory systems described in Section 3.1. To more 

thoroughly show the process of modeling the various attributes through the constructs discussed 

earlier, the model is discussed in the context of supervising multiple unmanned vehicles. The low 

task load study described in Chapter 2 provides the necessary information for estimating 

parameters of the LTL-DES model.  

First, the events in this model capture the different tasks that are available for the human to 

perform, within the study described in Chapter 2. The endogenous events are:  

Figure 6: WTAI – time relationship (applies to divided attention state). 
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 Creating/editing search tasks – Operators need to create/edit search tasks to prompt the 

vehicles to search a specific area to find friendly, unknown or hostile targets. 

 Replanning – Operators can replan to assign vehicles to various search tasks. 

 Read/Respond to chat messages – Operators need to respond to chat messages that are 

sent by the command center. 

Exogenous events are: 

 Target identification – Operators need to identify targets that vehicles find. 

 Weapons launch approval – Operators need to approve the destruction of hostile targets. 

Furthermore, events that are time critical and need to be serviced within a predetermined amount 

of time expire and leave the queue. In the LTL-DES, the following events may expire: 

 Chat message events expire after a predetermined amount of time if not serviced. 

 Replan events prompted by the system expire once the next replan event is prompted.   

It should also be noted that operators can induce more events by creating/editing search tasks and 

replanning. As described earlier, operator-induced events are taken into account in the directed 

attention state. In the divided attention state, most of the time operators only serviced system-

generated events and only rarely created additional events. For this reason, the model assumes 

that additional events are not created in the divided state of its operation. The different types of 

events have associated probability distribution functions that characterize the inter-arrival time of 

the events (Appendix C). Furthermore, dependencies among the events are modeled in the LTL-

DES. More specifically, the arrival of each type of endogenous event is conditioned on the same 

type of event being serviced first. For example, if the operator has not serviced a replanning 

event that is in the queue, another replanning event will not arrive to the queue until the first 
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replanning event has been serviced. Also, servicing some of the events triggers the arrival of 

other events. For example, servicing a weapons launch approval event triggers the arrival of a 

chat message event, since a confirmation message is sent once the missile destroys a target.  

To model the service times, probability distribution functions are used to describe operator 

interaction with the events. Each type of event has an associated probability distribution 

function, which was computed by using the observed data from the experiment discussed in 

Chapter 2. It was also observed in the experiment that over time, event service times became 

shorter; however, operators’ reaction times were the fastest in the beginning and in the end of the 

experiment and slowest in the middle. To account for change in service times, the probability 

distribution functions characterizing service times are non-stationary and change every hour in 

the LTL-DES, based on the observed service times (Appendix C).  

The flow of events is greatly affected by the attention states. As described earlier, in the directed 

attention state, all the possible events, except the unrelated tasks, are generated and the model 

operates at its maximum capacity. In the divided attention state, only system-generated events 

are taken into account. Also, the servicing of tasks may be delayed due to WTAI. Finally, in the 

distracted attention state, the flow of events stops in the queue while the system continues 

generating endogenous and exogenous events. If the operator spends considerable amount of 

time in the distracted attention state, then the performance of the system can be expected to 

decline. To measure the performance of the system, performance metrics were defined. These 

metrics are the outputs of the model and are presented in the next section. 
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3.8 Model Outputs 

In general, primary steady-state measures of a queuing-based DES model are the average number 

of events in the system and in the queue, the average time events spend in the system and in the 

queue, and the server utilization for the whole duration of the mission and for shorter time 

intervals. In the LTL-DES model, from the steady-state measures mentioned above, utilization is 

used as a measure of operator workload. It is calculated as the ratio of the time the server is busy 

servicing tasks divided by the total duration of the simulation. For a single server queuing 

system, such as the LTL-DES, the long run server utilization ( ) is equal to the average event 

arrival rate ( ) divided by the average service rate ( ). 

                                                                           
 

 
                                                                 (3.3)  

For the queuing system to be stable, the arrival rate must be less than the service rate, i.e.,    .  

If the arrival rate is greater than the service rate, then    . In real-world situations, this can 

happen when operators are asked to do more than they can handle. One way to alleviate the 

saturation of servers is to increase the number of servers (i.e., operators). 

In the LTL-DES model, average event wait time in the queue is also calculated. To find the 

average time events spend in the system, we define   
    

      
 

 to be the time each event 

spends in the system, where   is the number of arrivals during      . Hence, the average time 

spent in the queue per event will be: 

                                                                 ̂  
 

 
∑   

  
                                                           (3.4) 
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As      ̂    , where    is the steady-state time spent in the queue. For stable queuing 

systems,    must be bounded, otherwise wait times will grow indefinitely. It has been shown 

that average event wait time and operator utilization can allow for comparison across multiple 

applications (Pina, Cummings, Crandall, & Della Penna, 2008). 

Besides the basic metrics that can be captured by DES models, system designers can also create 

mission specific metrics to evaluate the impact of variables of interest. In the LTL-DES model, 

the combination of directed and divided attention states, as well as average task wait time was 

utilized to assess operator performance. More specifically, the performance score was computed 

as shown below. 

                                                                                                               (3.5)  

In Equation 3.5,    represents the performance score,      and      represent the percentage of 

time spent in directed and divided attention states, respectively. The relationship between 

directed, divided attention states and performance score was extracted from the previously-

conducted low task load, long duration experiment (Hart, 2010). 

  

3.9 Summary 

The LTL-DES provides a novel way of modeling system performance of low task load 

supervisory domains. The model has all the basic constructs of a traditional DES model, i.e., 

events, arrival processes, service processes, and various queuing policies. Through these 

constructs, the supervisory system and the human operator are described.  In addition to the basic 

constructs, a new modeling approach is used in which the LTL-DES takes into account the 
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attention states of operators, which are used to temporarily stop the flow of events and change 

the queuing policy. Another factor that differentiates the LTL-DES model from a previously-

developed DES model (Nehme, 2009) is the use of non-stationary service time distributions to 

more accurately model human operators. Lastly, the model utilizes a novel approach in modeling 

wait times due to attention inefficiencies by conditioning these wait times on the total mission 

time, rather than on predetermined intervals during the mission (Nehme, 2009). The model 

outputs various performance metrics that can be used to evaluate the system. More specifically, 

the number of events serviced, utilization, and average event wait time in the queue, as well as a 

mission-specific metric are utilized in the LTL-DES model. 

To confirm that the model represents true system behavior and to increase the credibility of the 

model, it needs to be validated. The validation of the LTL-DES model was conducted by using a 

historical data set and a human-in-the-loop experiment. This process is presented in the next 

chapter. 
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4. Model Verification and Validation 
 

One of the most important and difficult tasks in the development of a simulation model is the 

verification and validation (V&V) process (Banks, Carson, Nelson, & Nicol, 2005). If the V&V 

process has not been performed or the model failed to satisfy V&V requirements, designers 

should be skeptical of using the model to make design recommendation or judgments about the 

operation of the system. As defined by Banks et. al. (2005), verification is concerned with 

building the model correctly. The goal of the verification process is to guarantee that the 

conceptual model matches the computer representation, i.e., the simulation software is 

implemented correctly. In contrast, the validation process is concerned with building the correct 

model. The objective of validation is to confirm that the model accurately represents the real 

world system. It is often too costly and time consuming to determine that a model is absolutely 

valid over the complete domain of its intended applicability. Instead, tests and evaluations are 

conducted until sufficient confidence is obtained that a model can be considered valid for its 

intended application (Sargent, 2007).  

It is also important to understand that the outcome of V&V should not be considered as a binary 

variable, i.e., the model’s accuracy is neither perfect nor completely imperfect (Balci, 2003). 

Modeling and Simulation (M&S), by definition, is an approximation of the real system; 

therefore, it is only logical to assume that the results of the model can either describe the real-

world system with sufficient accuracy or not.  

Lastly, one should take into account the possibility that the V&V process for all the sub-systems 

of a model yields sufficient results, but the model as a whole fails to meet the V&V criteria 
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(Balci, 1997). Ultimately, the most important decision criterion when determining the accuracy 

of a model is to determine the accuracy of the whole.  

To describe the V&V process of the LTL-DES, the next two sections describe both the 

verification and validation in general and in the context of the LTL-DES.  

 

4.1 Verification 

To assure that the conceptual model (i.e., system structure, system components, parameter 

values, simplifications, etc.) of the system is reflected sufficiently in the operational model, 

several techniques are suggested. Some of the techniques are presented below and have been 

utilized in the verification process of the LTL-DES. 

 The assumptions of the operational model should be checked by a subject matter expert 

who is not the developer of the model (Banks, Carson, Nelson, & Nicol, 2005).  

The LTL-DES assumptions, presented in Section 3.1, were reviewed by at least two 

researchers who had in-depth knowledge of queuing-based models and UV control systems. 

Their feedback confirmed the reasonableness of the model assumptions. 

 Graphical interfaces representing the operational model are recommended and can 

simplify the task of understanding the system (Bortscheller & Saulnier, 1992) 

Animations of the LTL-DES in three different attention states were created that showed the 

flow of events in the model. These animations proved to be very useful in understanding and 

visualizing the operation of the model. A graphical representation of the divided attention 
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state, as applied in the LTL-DES is shown in Figure 7. The figure shows the human server 

attending to both system-generated and unrelated tasks. Also, self-imposed events are not 

added to the queue, which contains two different events, represented by the diamond shaped 

figures.  

 

                                            Figure 7: Graphical representation of the divided attention state. 

 

 The outputs should be examined for reasonableness.  

During various stages of the LTL-DES development, some of the outputs, such as utilization 

and number of events serviced, were monitored for unusual values. For example, the number 

of events were monitored during the development process of the model. If the number was 

significantly different from an expected value, then there was a high probability the 

simulation was not implemented correctly and the cause of the discrepancy needed to be 

identified. This process helped ensure that the operational model reasonably reflected the 

expected results of the conceptual model. 



60 
 

These techniques are all subjective model verification methods. However, for some models, 

there are objective ways of verification. For example, when verifying queuing-based systems 

with Markovian arrival and service processes, several performance measures can be calculated 

analytically and compared to the simulation results. Unfortunately, the LTL-DES is too complex 

to use analytical techniques to compute steady-state measures of performance, hence, only the 

above mentioned techniques were utilized to successfully verify the model. 

Once the verification process was completed, the model needed to be validated. In general, two 

types of validation exist: replication and prediction validation (Balci, 2003). The replication 

validation of the LTL-DES is discussed in the next sections, whereas the prediction validation is 

presented in Chapter 5. 

 

4.2 Replication Validation  

Model validation goes hand in hand with model calibration, which is the iterative process of 

comparing the model to the real system and making adjustments, if necessary (Banks, Carson, 

Nelson, & Nicol, 2005). Figure 8 graphically depicts the validation and calibration process. As 

one might expect, validation and calibration can continue indefinitely by continuously 

recalibrating the model to characterize new systems. Ultimately, the modeler’s judgment, time, 

and the cost associated with recalibration dictates the number of readjustments needed to have a 

sufficiently well-calibrated model.  
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To simplify the validation and calibration process, a three-step approach has been proposed by 

Naylor and Finger (1967). The three steps are: 

 The model needs to have high face validity. 

 Assumptions of the model should be validated. 

 The input-output transformations of the model should be compared to input-output 

transformations of the real system. 

These steps are discussed in detail in the next sub-sections. 

4.2.1 Face Validity 

The model is considered to have high face validity if, on the surface, it appears to model the 

system it is supposed to be modeling (Proctor & Zandt, 2008). For the LTL-DES, high face 

validity was established by comparing the actual and expected responses of the model when 

varying input variables to the model. For example, the percentage of directed attention state was 

varied and predicted utilization was examined against the expected response, i.e., on average 

Figure 8: Model validation and calibration (Banks et al., 2009). 



62 
 

more directed operators should have higher utilization compared to less directed operators. Also, 

subject matter experts in the area of modeling human supervisory control domains have indicated 

that the model has all the necessary components to successfully model human interaction with 

autonomous systems in low task load supervisory domains. Lastly, the iterative calibration 

process of the LTL-DES model provided information about the strengths and shortcomings of 

the model. The biggest shortcoming of the earlier versions of the model (Nehme, 2009) was the 

inability to account for operators’ low task loading, which is crucial in predicting performance in 

low task load domains. The model was later modified to account for specific attention states. 

Once the face validity of the LTL-DES had been established, the assumptions of the LTL-DES 

were validated, discussed next. 

4.2.2 Validation of Model Assumptions 

The assumptions made while developing the LTL-DES model can be grouped in two categories: 

structural and data assumptions. Structural assumptions refer to the operation of different model 

components and simplifications made when integrating the components. The structural 

assumptions are validated by comparing observations to the operation of the model. In the case 

of the LTL-DES, observations were acquired from the data set generated by the long duration, 

low task load experiment described in Chapter 2 (Hart, 2010). The following are the main 

structural assumptions: 

 The queuing policies implemented in the DES model were compared to the observed 

strategies that operators utilized to service tasks. The results of the comparison validated 

the assumptions that FIFO and priority-based queuing policies are sufficient for modeling 

operators’ task selecting behavior. 
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 The structural assumptions made when implementing the three attention states (Section 

3.7) were also validated by examining operators’ observed behavior. More specifically, it 

was observed that in the directed attention state, operators serviced both system-

generated events and induced additional events not required by the system. In the divided 

attention state, only system-generated events were serviced. Lastly, in the distracted 

attention state, events were not serviced at all. 

 The assumption that human operators act as serial processors of tasks was validated 

based on the cognitive nature of the tasks. More specifically, higher level (cognitive) 

tasks are attended serially, whereas more low level, perception-based tasks can be 

processed in parallel (Liu, Feyen, & Tsimhoni, 2006). 

Validating the data assumptions was conducted by computing inputs of the model using the 

historical data set. Input modeling is one of the most critical stages in model validation, since 

inaccurate model inputs invariably yield invalid results, even when the structure of the model is 

accurate. This concept is also known as garbage-in-garbage-out (GIGO). For the LTL-DES, 

inputs to the model are inter-arrival and service distributions for various tasks, along with 

distributions of the three attention states. In the past, probability distributions were calculated by 

(1) hypothesizing an appropriate distribution, (2) estimating the parameters for the hypothesized 

distribution, and (3) conducting goodness-of-fit tests to validate the assumed statistical 

distribution (Banks, Carson, Nelson, & Nicol, 2005). Currently, several statistical software 

packages can quickly and accurately identify the statistical distribution that best fits collected 

data (e.g., MATLAB
©

, EasyFit
©

). To model the input data for the LTL-DES, the statistical 

software package EasyFit
©

 was used to identify the distributions that best fit the observed data of 

the previous low task load study. The Kolmogorov-Smirnov goodness-of-fit test was utilized to 
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assess the suitability of a chosen distribution. A significance level of 0.05 was selected to either 

reject or accept the goodness-of-fit test. The parameters of the probability distribution functions 

selected as inputs to the model for the service times and inter-arrival times are valid estimates of 

the observed data and are presented in Appendix C. 

Once the inputs of the model were selected, the next step to validate the LTL-DES was to 

evaluate the input-output transformations. 

4.2.3 Validating Input-Output Transformations 

The input-output transformation is the most important stage in validating a simulation model and 

can be considered as the only objective way of testing the model. In this stage, the model accepts 

values of input parameters (distributions) and transforms them to performance measures (output 

variables). The transformations of the model are then compared to the actual observations to 

evaluate the validity of the model. The LTL-DES was validated using an historical data set 

collected from the study presented in Chapter 2 (Hart, 2010). The input parameters of the model 

were generated based on this data set, as explained in the previous section and are discussed 

more thoroughly in the next chapter. 

As described in Chapter 2, the best performers in the study (whose performance scores were one 

standard deviation above the mean) were generally more directed than worst performers (whose 

performance scores were at least one standard deviation below the mean). Moreover, the 

difference between the best and worst performers’ attention allocation strategies was so profound 

that two different versions of the LTL-DES were developed to account for significant differences 

in attention allocation strategies. Figure 9 shows why it is important to model the best and 
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worst performers separately. It is easy to see that the best performers were better multitaskers 

and more directed than the worst performers. Also, the best performers were more consistent in 

their attention switching behavior, i.e., the amount of time they spent in a directed attention state 

was correlated with the number of times they switched to a directed attention state, while there 

was no correlation for the worst performers. Hence, the two versions of the model took into 

account the overall percentages of attention states, as well as the switching pattern between the 

states. Also, having the ability to predict performance metrics of the best and worst performers 

provides important information about the range of possible outcomes. It is also essential to know 

the behavior of an ―average person‖, which is also modeled in the LTL-DES.   

After developing the LTL-DES model for the average person and for the best and worst 

performers, 500 iterations of the LTL-DES were conducted. Each trial simulated one operator 

involved in a four hour mission supervising multiple UVs. After each simulation trial, initial 

values of the model parameters were randomized to simulate different human behavior. Once all 

500 trials were complete, all the generated data was transferred to a MATLAB
©

 file for analysis. 

For various performance measures (number of events serviced, utilization, and mission 

a. best performers                                                   b. worst performers 

Figure 9: Attentions states of (a) best and (b) worst performers. 



66 
 

performance score) the observed values were compared to the model outputs to establish model 

validity. The outcomes of these comparisons are presented in the next sub-sections.  

4.2.3.1 Number of Events 

The number of events that operators service during the experiment represents a basic metric that 

allows designers to check the validity of the model. A significant difference between the number 

of observed and model predicted events indicates that most likely the inter-arrival distributions 

were not constructed correctly. Another possibility for the discrepancy can be inaccurate 

modeling of the attention states, since these states affect the flow of events into the human server 

(Section 3.7). The predicted and observed number of serviced events for all participants, as well 

as the best and worst performers are shown in Figures 10, 11, and 12, respectively. In the case of 

the best performers, the observed mean of the number of serviced events was 442.6 (s.d 50.86). 

The model predicted the number of events for the best performers to be 455.9 (s.d. 17.4), 

indicating that the model predictions fall within the standard deviation of the observed number of 

events. There was no statistical difference between the means ( ( )              ). For the 

worst performers, the observed mean of the number of events was 352.4, with a very large 

standard deviation (141.3). The predicted mean value was 335.3 (s.d 25.6) and there was no 

statistical difference between the means ( ( )             ). For the overall average, the 

observed number of events was 404.7 (s.d. 138.3). The predicted number of events was 391.62 

(s.d. 28.5). Although there was no statistical difference between the predicted and observed 

number of events ( (  )              ), the model is unable to capture the large variability 

of the observed number of events. This is mainly due to a great variability of different strategies 

that operators employ to supervise highly autonomous systems.  
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Figure 10: Observed and predicted number of events for all. 

 

 

                                Figure 11: Observed and predicted number of events for best performers. 
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                              Figure 12: Observed and predicted number of events for worst performers.  

 

4.2.3.2 Utilization 

Utilization can be used to approximate operators’ workload. Therefore, it is crucial for the LTL-

DES to accurately replicate observed values. Figures 13, 14, and 15 depict the observed and 

Figure 13: Observed and predicted utilization for all. 



69 
 

predicted utilization for all, best and worst performers, respectively.  

For overall average, the observed mean utilization was 11.4% (s.d. 3.36%). The predicted 

utilization was 10.9% (s.d. 1.6%) and there was no statistical difference between the means 

( (  )             ). For the best performers, the observed average utilization was 13.1% 

(s.d. 3.8%), whereas the predicted average utilization was 12.6% (s.d. 0.7%). For the worst 

performers, the observed average utilization was 11.22% (s.d. 4.1%), whereas the predicted 

average utilization was 9.82% (s.d. 1.4%). In both cases, the model predicts the utilization 

sufficiently well, since model predictions fall within one standard deviation of the observed 

values and no statistical difference was observed (best performers:  ( )              worst 

performers:  ( )              ). Nonetheless, the predicted standard deviation is about 3-4 

times smaller than the observed standard deviation. This is again due to the very large variability 

of different strategies that operators employ during human-in-the-loop experimentation. 

Figure 14: Observed and predicted utilization for best performers. 
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4.2.3.3 Performance Scores 

Replication of the observed performance scores from the human-in-the-loop study increases 

confidence in the model’s ability to capture the effects of operator and automation performance 

(Nehme, 2009). The performance score represents the participants’ ability to quickly find as 

many targets as possible and destroy as many hostile targets as possible. Figure 16 shows 

observed and predicted performance for all participants on a zero to two scale. The score 

represents operators’ performance in quickly finding as many targets as possible and destroying 

hostile targets in a timely manner. The predicted performance score for each trial was computed 

according to Equation 3.5. The score was averaged over 500 trials. Average observed 

performance score for all participants was 1.13 (s.d. 0.4). The average predicted performance 

score was 1.04 (s.d. 0.14). Moreover, no statistical difference was established between the means 

Figure 15: Observed and predicted utilization for worst performers. 
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Figure 17: Observed and predicted performance for best performers. 

( (  )              ). The average observed performance score of best performers (Figure 

17) was 1.69 (s.d. 0.07) and average predicted score was 1.70 (s.d. 0.03). The means were not 

statistically different ( ( )              ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Observed and predicted performance for all. 
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In the case of the worst performers (Figure 18), the observed mean score was 0.55 (s.d. 0.11). 

The model predicted the average performance score to be 0.51 (s.d. 0.04) and there was no 

statistical difference compared to the observed value ( ( )              ). Overall, the 

model predicted performance scores were all within one standard deviation of the observed 

performance scores.  

 

 

 

 

 

 

 

In all of the replications (i.e., number of events, utilization, mission performance score), the 

model yields adequately good results. Therefore, it is reasonable to conclude that the replication 

validity of the model can be established based on the historical data set of human-in-the-loop 

experimentation.  

Besides the performance measures, the model can also be used to replicate observed attention 

switching patterns of operators. This is important in analyzing various attention switching 

patterns that can affect the system performance in different ways. This can also provide an 

Figure 18: Observed and predicted performance for worst performers. 
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opportunity to evaluate whether an observed behavior is advantageous in improving system 

performance. In the next section, the model is utilized to simulate observed cyclical attention 

switching behavior. 

 

4.3 Cyclical Attention Switching Strategy 

The LTL-DES model can be used to simulate various attention switching behaviors of operators. 

Both the attention states and the switching pattern between the attention states can significantly 

affect the performance of the system. Undoubtedly, the performance of the system will be 

positively impacted if the operator supervising the system is in the directed attention state 

majority of the time. Similarly, if the operator is distracted the majority of the time, the system 

performance can be expected to be lowered because of higher probability to miss mission critical 

events. The data set of the low task load study (Hart, 2010) was used to investigate the effects of 

various attention states and attention switching strategies on system performance.  

Figure 19 shows the observed attention states of the best performer in the low task load study. 

The best performer spent the majority of the time (90%) in the directed and divided attention 

states. It should not be surprising that in a low task load study, the operator who was distracted 

very little performed very well. Comparing the attention states of the second best performer 

(Figure 20) to the best performer (Figure 19), it can be observed that the second best performer 

spent about half of his time in the distracted attention state, but still managed to record a 

performance score only 1% behind the best performer. According to Figure 20, the percentage of 

directed attention state of the second best performer fluctuated in a cyclical manner. To further 
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Figure 20: Observed attention states of the second best performer. 

analyze the effects of cyclical attention switching on operator performance, the LTL-DES model 

was utilized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.1 Effects of Cyclical Attention Switching on Operator Performance 

As described in Chapter 2, sustaining directed attention in low task load supervisory settings can 

be challenging. Therefore, it is important to evaluate various attention switching strategies that 

Figure 19: Observed attention states of the best performer. 
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Figure 21: Observed and approximated directed attention state of the second best performer. 

can help operators perform well. The cyclical attention switching strategy of the second best 

performer, described earlier, appeared to have a significant role in contributing to this 

participant’s high performance score. To further assess the effects of cyclical attention switching 

strategies, the second best performer’s directed attention state was approximated using a cosine 

function (Equation 4.1, Figure 21). Using this cosine function as an input to the LTL-DES, it is 

possible to evaluate the performance score of operators.  According to the model predictions, the 

performance score of the worst performers should double if they switched their attention 

according to the cosine function (Figure 22).  
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Figure 22: Predicted performance score of worst performers using cyclical attention switching strategy. 

 

 

 

 

 

 

 

 

The results suggest that if it is possible to prompt operators of supervisory control systems to 

switch their attention in a cyclical manner, then dramatic performance increments could be 

achieved for those operators who generally do not perform well. It is important to note that 

prompting operators of supervisory control systems to switch in such a cyclical manner might be 

beneficial for the worst performers. However, cyclical attention switching strategy, most likely, 

will not be beneficial for the best performers, since majority of these operators monitor the 

system periodically, unlike the worst performers, who usually have hard time sustaining 

attention. 

In order to evaluate the feasibility of prompting operators to pay attention to the system in a 

cyclical manner, a new long duration, low task load study was conducted. The study examined 

the possibility of improving system performance by utilizing the cyclical attention switching 

strategy. While the best performer spent most of her time directed and divided, it is unrealistic to 
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expect majority of operators to be distracted only 10% of the time in low task load domains. 

Hence, a possible design intervention based on the cyclical attention switching strategy was 

evaluated in the study. Additionally, the study was used for predictive validation of the LTL-

DES, which is the next step in validating a simulation model. The details of the experiment and 

the results are presented in the next chapter. 
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5. Predictive Validation 

A long duration, low task load study was conducted for two primary reasons. First, the results of 

the experiment were used for the predictive validation of the Low Task Load Discrete Event 

Simulation (LTL-DES) model. Second, the study was designed to evaluate the possibility and 

effectiveness of prompting operators of low task load supervisory systems to switch their 

attention in a cyclical manner. Before discussing the results and predictive validation of the 

model, the experimental setup is discussed. 

 

5.1 Low Task Load, Long Duration Experiment 

5.1.1 Apparatus 

The simulation testbed used in this experiment, called the Onboard Planning System for 

Unmanned Vehicles Supporting Expeditionary Reconnaissance and Surveillance (OPS-USERS), 

allows a single human operator to supervise several highly automated UVs in a search, track, and 

destroy mission (Fisher, 2008). The interface was inspired by a futuristic UV control paradigm, 

in which a single operator is responsible for monitoring and controlling multiple UVs. The 

control structure is based on a high-level, goal-oriented scheme, rather than low-level, vehicle-

based control. More specifically, operators are able to task the vehicles to search certain areas; 

however, they cannot specify altitude, heading, airspeed or other vehicle-level parameters. 

Instead, the operators specify locations on a map where they want the vehicles to travel to search, 

track, or destroy targets. 

The main display of the OPS-USERS interface is the Map Display shown in Figure 23. The 

display shows a top-level view of the area in which vehicles are located. Operators are 
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responsible for supervising four UVs: (1) one vertical takeoff and landing unmanned aerial 

vehicle (UAV), (2) one fixed-wing UAV, (3) one unmanned surface vehicle (USV), and (4) one 

fixed-wing weaponized UAV (WUAV). Tasks are shown on the map as markers where vehicles 

need to go to explore. Targets can be (1) friendly, represented by blue color, (2) unknown, 

represented by yellow color, and (3) hostile, represented by red color. The symbols for the UVs 

and for the targets are based on DoD standards (US Department of Defense, 2008). The upper 

right corner of the Map Display shows a mini map, which is convenient to use when the Display 

Map is zoomed in and overall map view is not available.  

The Chat Message Box is located in the lower right corner and depicts intelligence information. 

When a message comes in, participants hear a tone and the black outline of the box starts to 

blink. To stop the Chat Box from blinking, participants should click on the box.  

Figure 23: Map Display 
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The Timeline gives temporal information for each UV for the next thirty minutes, indicated in the 

format hours:minutes:seconds. Green bars in the Timeline indicate refueling, and blue bars 

indicate the UV is performing a task. The letter abbreviation of the task (whether Search Task or 

Target Track Task) appears in the blue bar. Each UV is limited to two task assignments at a time. 

White space indicates idle time or time traveling between tasks.  The timeline shifts to the left as 

time passes. 

The Performance Plot shows the auto-planner’s computation of the current schedule’s 

performance (red line) in comparison to the actual overall performance (blue line) of the current 

schedule. The plot moves to the left as time passes. 

5.1.1.1 Operator Tasks 

There are several tasks that operators need to complete over the course of the simulation: (1) 

replan, (2) create, edit, and delete search tasks, (3) identify targets, (4) approve weapons launch, 

and (5) respond to chat messages. These are discussed in detail below. 

Replan 

Since the vehicles operate in a dynamically changing environment, operators occasionally need 

to replan to update vehicles’ path schedules. The Replan button in the lower left corner of the 

Map Display turns green when a new plan is available from the auto-planner, which is generated 

by a market-based, decentralized algorithm (Valenti, Bethke, Fiore, How, & Feron, 2006). Once 

the participant clicks the replan button, the Schedule Comparison Tool (SCT) appears (Figure 

24) allowing operators to compare various path schedules for the vehicles. 



82 
 

Search Tasks 

To command vehicles to search a specific area, operators need to create search tasks. Right 

clicking a location on the Map Display opens the Search Task Window shown in Figure 25. 

Right clicking an existing search task brings up the same window to edit the search task. The 

operator can designate the priority level of the task and the time frame in which it should be 

Figure 24: Schedule Comparison Tool (SCT). 

Figure 25: Search Task Window. 
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completed. If the checkmark ―WUAV Loiter?‖ is selected, then the automated planner sends the 

WUAV to the search location. 

Identify Targets 

When UVs find targets, operator assistance is needed to identify these targets. In the OPS-

USERS testbed, this process is simplified. When a target is found, a target identification window 

opens. Instead of actual imagery, symbols corresponding to either friendly, unknown, or hostile 

targets are displayed in the window. The operator pans through the target identification window 

until the target is in view, identifies the target, and assigns a priority level based on the mission 

parameters (Figure 26). The operator can later click on the same target to redesignate priority 

level or change the target status. 

 

Weapons Launch Approval  

Before hostile targets can be destroyed, the operator has to approve the destruction of the target. 

The Missile Launch Approval Window pops up automatically (Figure 27) when the WUAV 

sights the hostile target for destruction and a second UV has the hostile in its sight. To destroy 

Figure 26: Target identification sequence. 
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the target, the operator pans through the screen for a direct view of the target and clicks the red 

Approve Launch button. 

Respond to Chat Messages 

Occasionally, the operator receives messages from the Command Center. These messages can be 

informative (e.g., providing intelligence information), inquisitive (e.g., asking about the number 

of targets found), or commanding (e.g., asking to search a specific area). Operators are instructed 

to acknowledge the chat messages and implement an appropriate action as soon as possible. 

5.1.1.2 Hardware 

An operator workstation consisted of a Dell Inspiron desktop computer with a 17 inch monitor 

that was specifically allocated for the OPS-USERS interface. A second 17 inch monitor was 

available for the operators to use for non-simulation related purposes. The operators were 

videotaped using Microsoft™ HD web cameras for the duration of the experiment. One camera 

was allocated per operator and another camera recorded the overall view of the experimentation 

room. Lastly, all participants were required to wear wireless headphones, which allowed them to 

Figure 27: Missile Launch Approval Window. 
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move around the experimentation room and still be able to hear auditory alerts of the OPS-

USERS interface. Participants were alerted every time a new chat message arrived, as well as 

when the system prompted to replan. The replan alert was implemented in the form of a 

computerized female voice pronouncing ―Replan.‖ The chat message alert consisted of two 

chimes that were approximately 100ms apart at 1400Hz and 1550Hz.  

5.1.2 Participants 

Nine participants, two females and seven males, operated the simulation three at a time to 

simulate a typical unmanned vehicle operating environment. Each participant had his own 

workstation running an independent version of OPS-USERS. Participants were compensated 

$400 for completing two four hour missions on different days. Also, they were informed that the 

person with the highest performance score would receive a gift card valued at $250. 

Participants were recruited from the undergraduate and graduate student population of MIT. 

Ages ranged from 18 to 24, with mean of 20.7 years and standard deviation (s.d.) of 1.4 years. 

The participants had diverse video-gaming experience. More specifically, two participants 

specified that they played video games daily, while three participants specified that they rarely 

played video games. Also, the participants did not have any military experience (Appendix D). 

5.1.3 Experimental Procedure 

Before starting the experiment, participants read and signed the consent form. Next, participants 

completed a demographic survey, indicating their age, gender, occupation, military experience, 

gaming experience, sleep duration for the past two nights, and comfort level using computers. 

The NEO-Five Factor Index personality survey (Costa & McCrae, 1992) was administered, 

which rates participants’ neuroticism, extraversion, openness to new experiences, agreeableness, 
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and conscientiousness. Lastly, the Boredom Proneness Survey (BPS) was administered (Farmer 

& Sundberg, 1986). The consent form and pre-experimental surveys are shown in Appendix E. 

All participants completed a training session, consisting of a self-paced PowerPoint™ tutorial 

and a practice session using the OPS-USERS interface. The tutorial covered all functionalities of 

the interface, as well as the objectives of the operators. The practice session was an opportunity 

for the participants to further familiarize themselves with the interface and ask questions, if 

desired. The session lasted 15 minutes, after which participants took a five-minute break before 

starting the four-hour long test session. 

During the test session, each participant was responsible for controlling four UVs. Overall, six 

targets were available to be found over the course of the experiment and half of the targets were 

hostile and needed to be destroyed. The targets were uncloaked every 40 minutes, starting at the 

tenth minute. Participants were allowed to interact with each other and use personal items, such 

as books, laptops and cell phones, though phone calls were not permitted. Additionally, snacks 

and a variety of non-alcoholic beverages were provided. All these items served as possible 

distractions from the OPS-USERS interface. 

The experimenter remained in an adjacent room and monitored participants via webcams. Three 

times over the course of the study, the experimenter entered the test room to ensure that the 

simulation interface was working correctly and to check on the participants. If participants 

wanted to go to the restroom, the experimenter replaced them for the duration of the break, 

paused the simulation, did not interact with the simulation, and reported to participants any 

changes that had occurred. 
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After test session, participants completed a post-experiment survey, detailing their confidence 

level, busyness level, and the usefulness of auditory alerts on a five-point Likert scale, shown in 

Appendix E.  

Participants completed two test sessions, starting between 10am and 1pm on separate days, and 

the post-experiment survey was administered after both test sessions. However, the training 

session was administered only prior to the first experimentation session. The two training 

sessions are discussed thoroughly in the next section. 

5.1.4 Experimental Design 

The study was conducted to evaluate the effects of the design intervention on operator 

performance in low task load supervisory domains. For this reason, each participant completed 

two test sessions: one with a design intervention to prompt cyclical attention switching and 

another test session without the design intervention. The order of the sessions was randomized 

and counterbalanced. Each participant completed no more than one session per day, starting 

between 10am and 2pm. The intervention was implemented in the form of auditory alerts that 

were pre-programmed in the interface. The alerts were designed to be distinct from all the 

existing aural alerts within the interface. The alerts consisted of four distinct chimes 

approximately 300ms long that resembled a doorbell sound. Between the first two and last two 

chimes there was a 400 ms pause. Between the second and the third chimes the duration of the 

pause was 1.2 seconds.  

All participants were required to wear wireless headphones at all times to hear the alerts. The 

number of the alerts changed in a cyclical pattern (Figure 28) to promote the observed strategy, 

described in Chapter 4, by prompting participants to pay attention to the interface. Participants 
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were informed that the alerts indicated that the system needs operator attention. The time interval 

between the alerts for each 15 minute interval was designed by uniformly distributing the 

number of alerts shown in Figure 28 over 15 minute blocks.  

5.1.4.1 Variables 

The independent variable in this experiment was the design intervention, resulting in two testing 

conditions. 

The dependent variables were operators’ workload, performance scores, participants’ attention 

states, and subjective, self-rated metrics. 

Workload (Utilization)  

Utilization was used as a measure of objective workload. It is defined as percent busy time or the 

time operators spent interacting with various tasks divided by total available time. Although 

utilization does not account for the time that operators monitor the simulation, it is a useful 

metric that measures busyness level and has been used extensively to detect changes in workload 

(Cummings & Nehme, 2009; Cummings & Guerlain, 2007; Proctor & Zandt, 2008).  

Figure 28: Number of auditory alerts shown in 15 minute blocks over the course of the experiment. 
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Performance Scores 

The performance scores provide information on how well the objectives of the mission were 

accomplished (i.e., the speed and number of targets found and the speed and number of hostile 

targets destroyed).  The overall performance score is comprised of the Target Finding Score 

(TFS) and the Hostile Destruction Score (HDS). The TFS accounts for the speed of finding 

targets and quantity of targets found. It is calculated as follows: 

                                 
∑

  
  

 
    (    )

  
                                                                     (5.1) 

where 

   – time to find target   since it was available to be found 

   – time target   was available to be found 

  – number of targets found 

   – total number of targets available 

Equation 5.1 yields values between zero and one, where the higher the score, the better the 

participant performed. 

In a similar manner,     is defined as: 
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    (    )

  
                                                                   (5.2) 

where 

   – time to find  th hostile target since it was declared hostile 
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   – time target   was available to be found 

  – number of hostile targets found 

   – total number of hostile targets available 

The     also ranges from zero to one, where the higher score indicates better performance. 

Summing the     and     yields a performance score with a range of zero to two.  

Attention States 

Operators’ attention states were estimated by classifying their recorded activities. Three 

categories of attention states were identified: directed, divided, and distracted. In the directed 

attention state, the operator monitored the simulation interface or interacted with the interface. In 

the divided attention state, the operator monitored the interface while multitasking. An example 

can be eating while monitoring the interface. Lastly, in the distracted attention state, the operator 

did not pay attention to the interface at all (Appendix F). 

 

5.2 Experiment Results and Predictive Validation 

Operators’ utilization and performance scores were obtained by analyzing log files that captured 

operator interaction with the simulation interface. The recorded video files were used to 

approximate operators’ attention states. Lastly, pre- and post-experiment survey data was 

analyzed to obtain subjective ratings. The following sections present the LTL-DES predictions 

and the results of the validation efforts. Before discussing model predictions, the analysis of 

attention states is presented, since the attention states serve as inputs to the model, as described 

in Chapter 3. 
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5.2.1 Attention States 

In order to evaluate the attention states, two researchers watched the recorded videos and rated 

participants’ attention states according to the same rule-based rubric (Appendix F). Overall, 18 

four-hour-long videos were rated (coded): 2 four-hour videos per participant. The analysis 

revealed that in the first session, participants spent an average of 69% (s.d. 9%) of their time in a 

directed attention state, 22% (s.d. 4%) of their time in a divided attention state, and only 9% (s.d. 

6%) of their time distracted. These results were very surprising, since in the previous low task 

load long duration experiment, described in Chapter 2, participants were directed 35% (s.d. 15%) 

and distracted about 44% (s.d. 20%) of their time. It should also be mentioned that the 

participants of this study were extremely similar in their interaction style, i.e., the majority of the 

participants stayed focused most of the time. The small standard deviation of the attention states 

also confirms this point. Figure 29a shows the average attention allocation of participants during 

their first session. 

Similar results were obtained for participants in the second session (Figure 29b). More 

 a. first session                                                               b. second session 

            Figure 29: Attention allocation of participants during first (a) and second (b) sessions. 
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specifically, participants spent on average 58% (s.d. 8%) in a directed attention state, 27% (s.d. 

5%) in a divided attention state, and 15% (s.d. 6%) in a distracted attention state. Although the 

general trend was the same, i.e., participants were mostly directed and distracted very little, it is 

evident that participants became less directed during the second session ( ( )          

    ). As several participants mentioned in a post-experiment interview, after the first session 

they became more familiar with the interface and did not have to spend as much time monitoring 

the system to feel satisfied that they were achieving the objectives of the mission.  

The allocation of attention states with and without the design intervention were also analyzed. 

Figure 30 illustrates the average attention allocation for both scenarios. In the scenario without 

the design intervention, participants spent an average of 62% (s.d. 7%) in a directed attention 

state, 27% (s.d. 4%) in a divided state, and 11% (s.d. 4%) in a distracted attention state. In 

contrast, with the design intervention participants spent on average 66% (s.d. 9%) of their time in 

a directed attention state, 22% (s.d. 6%) in a divided attention state, and 12% (s.d. 6%) of their 

time in a distracted attention state. It should be mentioned that the participant of the previous 

study who exhibited the innate switching strategy was only 35% directed on average. Also, the 

a. without intervention                                 b. with intervention 

Figure 30: Attention allocation of participants without (a) and with (b) intervention. 



93 
 

nearly equal proportions of attention states across the two scenarios (with and without the design 

intervention) indicate that the design intervention did not significantly affect the overall 

allocation of participants’ attention resources. A paired t-test confirmed that no statistical 

difference exists ( ( )             ).  

To evaluate whether the design intervention affected attention allocation over time, participants’ 

attention states were analyzed in 15 minute increments. Figure 31 illustrates average attention 

states over the course of the four-hour-long study for the first and second sessions for all 

participants. Across the two sessions, participants were divided between 15 and 30 percent over 

the course of four hours. Also, during the first session, participants’ directed attention declined 

from 85% to approximately 65% (on average), while during the second session the percentage of 

directed attention declined from 80% to about 55%. Hence, in the second session participants 

started less directed than in the first session and over time they became even less directed. This 

resulted in the percentage of distracted and divided attention states slightly increasing from the 

beginning of the study.  

a. first session                                                      b. second session 

Figure 31: Attention allocation over time during first (a) and second (b) sessions. 
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Figure 32 shows the percentage of attention states across the two scenarios, i.e., without (a) and 

with (b) the design intervention. In both cases, the percentage of directed attention declines about 

25% in the first hour and then stays almost constant. The percentages of directed and distracted 

attention states, although fluctuate, do not increase or decrease significantly. Also, there are no 

statistical differences between the percentages of divided (  ( )              ) and 

distracted ( ( )              ) attention states across the two scenarios.  

Figure 5.29b shows several slight increases in the percentage of directed attention state, which 

appear to coincide with the maximum frequency of auditory alerts. However, the change in the 

percentage of the directed attention state is so small, that no definitive answer can be given on 

the cause of the fluctuations.  

When comparing the percentage of the directed attention state and the number of alerts across all 

participants, there was a significant correlation only for one of the participants (Spearman’s 

             ). This participant’s attention allocation over time is shown in Figure 33. It is 

interesting to note that this participant was the least directed among all the participants in the 

scenario with the design intervention. More specifically, he was directed on average about 40% 

a. without intervention                                                   b. with intervention 

Figure 32: Attention allocation over time during first (a) and second (b) scenarios. 
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of the time, divided 29%, and distracted 31% of the time. Therefore, the design intervention 

seemed to work for the most distracted participant, i.e. the participant switched his attention in a 

cyclical pattern. The design intervention appeared to work for this participant because he was not 

directed as much as the rest of the participants and was able to utilize the alerts to pay attention 

to the system. Furthermore, this participant’s attention allocation was the most comparable to the 

attention allocation of the participant after who the design intervention was modeled (directed 

37%, distracted 45%, divided 18%).  

 Appendix G summarizes the average percentage of attention states across the two sessions and 

two scenarios. Also, a table showing the average percentage of directed attention state in 15 

minute blocks is presented in Appendix G, along with pairwise t-tests comparing percentages of 

directed attention states. No statistically significant differences were established across the 

scenarios. 

The following two sections present model predictions of utilization and performance scores. 

Figure 33: The least directed participant’s directed attention state over time. 
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Since attention allocations across the scenarios were almost identical, only the attention 

allocation of the scenario with the design intervention was analyzed to serve as input to the 

model. 

5.2.2 Utilization 

The required average utilization of the study was about 2.1%, which was calculated based on the 

tasks that the system prompted operators to complete. However, total utilization was 

significantly greater than the required utilization. In fact, the average utilization in the scenario 

that did not include the design intervention was 14.5% (s.d. 4.8%) compared to 14.4% (s.d. 

4.4%) average utilization with the design intervention. 

To evaluate whether there were any differences between the first and second sessions (i.e., 

whether the order of the test sessions affected utilization), Table 1 shows the average utilization 

for the first and second sessions, as well as the average utilization with and without the design 

intervention. The results indicate that the design intervention did not affect the workload of the 

operators. It appears that during the second session, operators interacted less with the simulation 

interface. However, a within subject t-test showed that there is no statistical difference between 

the utilization in the first and second sessions (  ( )             ) and between the 

utilization of the scenarios with and without the design intervention ( ( )             ). 

Furthermore, there was no correlation between utilization in the first scenario and directed 

attention (Pearson’s               ) and utilization of the second scenario and directed 

attention (Pearson’s              ). Although one would expect participants who spent 

more time in the directed attention state to interact more with the interface, the results showed 

this was not true. The reason for this was that most of the participants who spent considerable 
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amount of time in the directed state did not necessarily interact with the simulation interface; 

rather, they monitored the interface. 

                                                                          Table 1: Utilization 

 

The LTL-DES was designed to predict operator utilization. Participants’ utilization was 

predicted to be 15.9% (s.d. 1.86%), based on 500 iterations of the model (Figure 34). Hence, the 

 1st session 2nd session With intervention Without 

intervention 

Average utilization (%) 15.0 13.9 14.4 14.5 

Standard deviation (%) 4.2 4.8 4.4 4.8 

Figure 34: Mean and standard deviation of observed and predicted utilization. 
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observed utilization for both scenarios falls within one standard deviation of the predicted 

utilization. A t-test comparing the model prediction to the results of the scenario without the 

design intervention yielded no difference (  ( )             ). When comparing the 

prediction of the model to the results of the scenario with the design intervention, the results of 

the t-test also revealed no difference ( ( )             ). These results suggest the model is 

able to predict utilization in this low task load environment.  

5.2.3 Performance Score 

The performance scores were calculated based on Equations 5.1 and 5.2. The averages and 

standard deviations across sessions and intervention scenarios are shown in Table 2. 

According to a within-subject t-test, there is no statistical difference across the sessions ( ( )  

            ) and the two scenarios ( ( )            ) using a 0.05 significance level. 

However, there seems to be a trend that indicates improvement in the performance score from 

the first session to the second session. This might be due to the learning effect, suggesting that as 

operators become more familiar with the interface, they understand it better and can make more 

effective decisions. 

                                                               Table 2: Performance Scores 

 1
st
  

session 

2
nd 

 session 

With intervention Without intervention 

Mean 1.56 1.72 1.53 1.74 

Standard 

deviation 

0.28 0.16 0.28 0.13 

 

In contrast, the design intervention seemed to negatively impact participants’ performance score, 

although there was no statistical difference. Most likely this was due to the fact that all of the 
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operators were directed most of the time and the auditory alerts were not necessary in prompting 

operators to pay attention to the interface. 

To further validate the predictive ability of the LTL-DES model, the performance score was 

predicted. Figure 35 shows the predicted and observed performance scores. The predicted 

performance score was 1.78 (s.d. 0.08). As Table 2 shows, the average performance score of the 

scenario without the design intervention was within one standard deviation of the predicted 

performance score. A t-test revealed no significant difference between the means (  ( )  

             ). However, the average performance score of the scenario with the design 

intervention was statistically different from the predicted performance score ( ( )          

    ). The reason for the difference is the fact that during the second scenario, one of the 

participants, who was, on average, only 13% distracted, destroyed five targets, including two 

Figure 35: Observed and predicted performance scores. 



100 
 

friendly targets, significantly lowering his performance score. Also, another participant did not 

find one of the hostile targets and found other targets late, which lowered this participant’s score. 

Nonetheless, this participant was, on average, only about 9% distracted.  

5.2.4 Discussion of Predictive Validation 

As described in the previous chapter, the LTL-DES model was developed to model operator 

performance in long duration, low task load supervisory domains. After the replication validation 

of the model, the next validation technique is the prediction validation, which was one of the 

goals for conducting the low task load, long duration study presented above.  

The observed utilization of the participants was not statistically different from the predicted 

utilization; therefore, the model predictions of utilization were accurate. Compared to a 

previously-conducted similar study (Hart, 2010), utilization was about 3.5% higher. More 

specifically, the average utilization of the new experiment was 14.5%, while the average 

utilization of the previous experiment was about 11%. This means that participants of the new 

study had different interaction strategies compared to the participants of the previous study. 

 Also, the large range of utilization indicates the range of strategies that operators employed to 

supervise the system. More specifically, the highest utilization (22.9%) was about three times 

greater than the lowest observed utilization (8.3%). Interestingly, both the highest and the lowest 

utilization values were observed in the scenario without the design intervention.  

The performance score prediction was not significantly different from the performance score 

results of the scenario without the design intervention. However, the prediction of the model was 

statistically different from the observed values of the scenario with the design intervention. The 

inability of the model to accurately predict the observed results is due to the fact that the model 
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does not take into account operator error. More specifically, the model does not account for 

destruction of friendly targets by operators who are mainly directed. Accounting for operator 

error can be accomplished by closely examining the error rate and assigning probabilities to 

making certain errors in judgment, which then can be implemented in the LTL-DES model. 

5.2.5 Discussion of Design Intervention 

The purpose of the design intervention in the experiment was to improve the performance of 

operators who had difficulties sustaining directed attention by prompting them to pay attention to 

the interface in a cyclical fashion. Unfortunately, in this study, there were not any participants 

who had difficulties sustaining attention. Moreover, all these participants performed very well, 

compared to the previously-conducted experiment. More specifically, in the previous study, the 

worst performers had a performance score of less than 0.7, while in the new study the lowest 

performance score was 1.0. Figure 36 illustrates the difference in performance scores. It should 

be noted that the performance scores across the two studies were normalized by taking into 

account various numbers of available targets.  Equations 5.1 and 5.2 detail the normalization 

process. 

In the new study, all of the participants were surprisingly directed, i.e., the percentage of their 

directed attention state was significantly higher compared to the previous study (  (  )  

            ). This can be considered the main reason the design intervention was not as 

effective in creating a cyclical attention state as hypothesized. In other words, prompting an 

operator who is already paying attention to the interface to pay attention in a cyclical fashion is 

not effective. However, the study showed that the participant who was directed the least (40%) 

responded to the design intervention in the first three hours of the experiment and exhibited a 
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cyclical attention switching pattern. This implies that more research needs to be conducted to 

assess the effectiveness of the design intervention on participants who are mainly distracted. To 

better understand the reasons the participants of the new study performed so well, demographic 

data of the participants, as well as pre- and post-experiment survey data were analyzed. This 

analysis can help extract personality traits to further refine the model by including other 

parameters that may affect performance. Subjective metrics are presented in the following 

section. 

5.2.6 Subjective Metrics 

Participants’ self-rated metrics provide valuable subjective information on their perceived 

performance during the experiment on a five-point Likert scale, where zero is low and five is 

Figure 36: Performance scores of previously-conducted and new experiment. 
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high. Various subjective metrics were analyzed and are presented in the following sections. 

Appendix G shows descriptive statistics of these metrics.  

5.2.6.1 Confidence Self-Rating 

Participants rated their confidence level in the actions they took while interacting with the 

interface.  Figure 37 illustrates all nine participants’ self-rated confidence levels. Across the two 

sessions participants felt slightly less confident about the action they took in the scenario with 

the intervention. More specifically, the average confidence self-rating without the intervention 

was 3.9 (s.d. 1.3) and 3.6 (s.d. 1.2) with the intervention. However, there was no statistical 

difference between the scenarios with and without the design intervention using Wilcoxon 

Signed Rank test (Appendix G).     

5.2.6.2 Performance Self-Rating 

Across the two scenarios, all the participants specified the same self-rated performance level, 

except one participant (Figure 38). The average self-rated performance without the intervention 

Figure 37: Confidence self-rating on a five-point scale. 
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was 4.1 (s.d. 0.8) and 4.0 (s.d. 1.0) with the intervention. This means that the participants felt that 

they performed equally well with and without the intervention even though the two trials were 

conducted on different days.  

5.2.6.3 Busyness Self-Rating  

When asked how busy participants were during the experiment, most of them answered (Figure 

39) either not busy (2) or busy (3). Only twice participants mentioned that they were idle (1). 

None of the participants specified that they were very busy (4) or extremely busy (5). Also, two 

participants thought that the intervention caused them to work harder. These participants 

interacted with the interface less during the scenario without the design intervention compared to 

the scenario with the design intervention. 

These results are similar to the self-rated busyness results of the previously-conducted 

experiment. More specifically, in the previous study, all the participants also rated their busyness 

between idle (1) and busy (3) (Hart, 2010). 

Figure 38: Performance self-rating on a five-point scale. 
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                                              Figure 39: Busyness self-rating on a five-point scale. 

5.2.6.4 Attention to alerts 

Participants also rated how frequently they paid attention to the auditory alerts of the simulation 

interface (Figure 40). All of the participants answered either frequently (4) or always (5), which 

reflects the low distraction levels of operators. 

Figure 40: Attention to alerts self-rating on a five-point scale. 
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5.2.6.5 Self-rated usefulness of alerts 

 The usefulness of various alerts was also rated by the participants (Figure 41). A greater 

variability was observed compared to the frequency with which participants paid attention to the 

alerts.  One of the participants specified that the alerts in the scenario with the intervention were 

not useful (1), while several other participants specified that the alerts were extremely useful (5). 

This variability means that participants utilized these alerts differently in their strategy of 

supervising UVs. It is important to note that the participant who specified that the alerts were not 

useful (1) was the most directed of all. This is logical, since this participant did not need the 

alerts to pay attention to the interface. It should also be mentioned that in the scenario without 

the design intervention only the replan and chat message alerts were implemented. 

5.2.7 Personality Profiles 

A NEO Five Factor Inventory psychological personality survey (Costa & McCrae, 1992) was 

administered to evaluate whether the personality of participants makes them more or less apt to 

Figure 41: Self-rated usefulness of alerts on a five-point scale. 
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perform well in low task load supervisory conditions. The personality dimensions measured by 

the survey are neuroticism, extraversion, openness to experience, agreeableness, and 

conscientiousness. A description of the dimension characteristics is presented below: 

1. Neuroticism – anxiety, hostility, depression, self-consciousness, impulsiveness, 

vulnerability to stress 

2. Extraversion – warmth, gregariousness, assertiveness, excitement seeking, positive 

emotion 

3. Openness to experience – fantasy, aesthetics, feelings, actions, ideas, values 

4. Agreeableness – trust, straightforwardness, altruism, compliance, modesty, tender-

mindedness 

5. Conscientiousness – competence, order, dutifulness, achievement striving, self-discipline, 

deliberation 

Figure 42 shows boxplots of the five personality dimensions discussed above. From the five 

dimensions, ratings for extraversion and openness to experience are significantly different from 

the theoretical mean (50), which implies that the participants who completed the study were 

significantly different from an ―average‖ person. Appendix G provides personality dimension 

scores for all nine participants, along with t-test results comparing the observed ratings of the 

personality dimensions to the mean theoretical average of 50 (McRae & Costa, 2010). 
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                           Figure 42: Boxplots representing five dimensions of the personality survey. 

To evaluate whether performance scores were correlated with the personality dimensions, 

Spearman’s correlation test was conducted. According to the results (Appendix G), no 

correlations were found between the personality dimensions and the percentage of participants’ 

directed attention. Also, there were no strong correlations between the personality dimensions 

and performance scores of the two sessions. However, conscientiousness was marginally 

correlated (                        ) with operators performance scores in the scenario 

without the design intervention. The conscientiousness score can possibly be a significant 

consideration factor when selecting future operators for low task load supervisory domains. 
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5.2.8 Boredom Proneness Scale (BPS) 

The BPS measures people’s propensity to become bored (Farmer & Sundberg, 1986). As 

described in Chapter 2, boredom can be a significant factor that impacts performance of 

operators in supervisory domains. The 28-item BPS was used to assess participants’ boredom 

proneness levels. According to previously conducted studies (Winter, 2002), the sample mean of 

the US population is around 10.5. Also, participants who score below 5 are very low on the BPS, 

and those who score above 15 are very high on the scale. The results revealed that the majority 

of the participants had low boredom proneness levels (Appendix H). More specifically, the 

average BPS score was 7.8 (s.d. 4.0), minimum score was 4.0 and maximum score was 16.0 on a 

28-point scale. Given the low BPS scores, it is not surprising that, on average, participants were 

only 12% distracted during the experiment. 

To assess whether the BPS score could be used to predict operator performance, correlation 

coefficients between the BPS scores and the performance scores were calculated. The results 

indicate that no correlation exists (Appendix H). This is important, since it suggests that boredom 

proneness was not a major factor affecting participants’ performance. In fact, the best and the 

worst performers specified the same level of boredom proneness. However, it might be that the 

homogeneity of participants (i.e., on average low BPS scores) contributed to the participants 

being mostly directed, which in turn resulted in high performance scores and no correlation 

between BPS and performance scores. In the future, a new study with a more diverse group of 

participants may yield significant results. 

In the following section, subjective and objective data of the best and worst performers is 

analyzed in detail to better understand the differences between these participants that caused one 
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of them to perform very well and the other participant at about 50% of the theoretical maximum 

performance. 

5.2.9 Best and Worst Performers Analysis 

This section describes the behavior and performance of the best and worst performers. Their 

performance scores were calculated by summing the     and     of the first and second 

scenarios. The resultant score had a range of zero to four, the higher the better.  

5.2.9.1 Best Performer 

The best performer was a 21-year-old undergraduate student with no military experience, and 

who plays video games every day. His performance score was 3.64 and of all the participants 

who completed the study, he was the least prone to being bored (4 out of 28 on BPS). The ratings 

of the personality dimensions were not extraordinarily high or low. He also specified that the two 

days prior to both experimentation sessions, he slept at least seven hours. He self-reported a very 

high confidence level and performance level. This participant’s self-reported busyness level was 

three (busy), self-reported attention to alerts was five (always) across the two sessions. Figure 43 

shows this participant’s attention states over time. Without the intervention, which was this 

a. without intervention                                              b. with intervention 

Figure 43: Best performer’s attention allocation over time. 
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participant’s first session, on average he was 76% directed, 13% divided, and 11% distracted. In 

contrast, during the second scenario, he was 76% directed, 4% divided, and 20% distracted. It 

appears that the best performer relied on the design intervention to shift his attention from 

divided state to distracted state, while maintaining the same percentage of directed attention. It is 

also interesting to note that in the scenario without the design intervention the participant appears 

to have a cyclical attention switching strategy, although he was not prompted in that scenario to 

switch in a cyclical pattern.  

The observed utilization of the best performer was the second highest overall: 21.1% in the first 

scenario and 18.6% in the second scenario. It should be reiterated that the required utilization 

was only 2.1%; hence, the winner interacted with the interface almost 10 times more than 

required. 

5.2.9.2 Worst Performer 

The worst performer was a 20-year-old male with no military experience who also regularly 

played video games. His performance score was 2.78 because, in the second scenario, this 

participant destroyed two friendly targets. His propensity of being bored was also very low (4 out 

of 28 on BPS). The most interesting fact about this participant was his sleep schedule in the days 

prior to the experiment. He specified that the night before his second scenario he slept only 30 

minutes and the day before slept 13 hours. Therefore, it should not be surprising that with only 

30 minutes of sleep, this participant destroyed two friendly targets and rated his confidence and 

performance to be a four on a five-point scale. The personality survey ratings did not indicate 

any strong personality traits. This participant’s self-reported busyness level was two (not busy) 

and self-reported attention to alerts was five (always) across the two sessions. Figure 44 shows 
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the attention states of the worst performer over time. Compared to the best performer, the worst 

performer was less directed, more divided, and distracted about the same. Also, the attention 

state pattern of the worst performer had greater variability compared to the top performer. 

Additionally, this participant spent considerable amount of time in the divided attention state by 

using his smartphone. Lastly, it is important to note that even though this participant performed 

the worst in the new low task load experiment, compared to the worst performer of the previous 

experiment, he performed much better. More specifically, the worst performer of the previous 

study had a performance score of 0.37, which is significantly lower than the lowest performance 

score (among the scenarios) of the worst performer (1.0) of the new study. 

Unlike the best performer, this participant completed the scenario with the design intervention 

first and the scenario without the design intervention two days later. The observed utilization 

values of the worst performer across the scenarios were 8.3% and 11.4%, resulting in an average 

utilization of 9.85%, which was the lowest average utilization among the participants. 

Interestingly, there was no correlation between the average utilization of participants and their 

performance scores, despite the fact that the worst performer had the lowest average utilization 

a. without intervention                                             b. with Intervention 

Figure 44: Worst performer’s attention allocation over time. 
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and the best performer had the highest average utilization. The main reason for the lack of 

correlation was the large variance in performance scores and utilization among other 

participants. A table containing utilization values for all participants across the two scenarios is 

presented in Appendix H.  

 

5.3 Summary 

This chapter presented predictive validation of the LTL-DES model. A long duration, low task 

experiment was described, including the apparatus used in the experiment, as well as the required 

operator tasks. Next, participant information, experimental procedure, and the experimental 

design were discussed. The results of the experiment were analyzed and compared with the 

predictions of the LTL-DES model. This comparison revealed that predictions of the model with 

regards to the utilization of operators were accurate. However, the model accurately predicted 

performance score only in one of the design scenarios. More specifically, the model 

overestimated the performance score of operators who made errors by destroying friendly 

targets. 

This low task load study also revealed that participants were significantly different from the 

general population in terms of their ability to sustain attention for prolonged periods. 

Furthermore, the design intervention implemented in the experiment to help operators of 

supervisory systems sustain directed attention could not be validated to have positive effects, 

mostly because the participants, in general, were highly directed. Lastly, it was established that, 

on average, participants had a low propensity of being bored. Over the course of the study, the 
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participants were distracted only about 12% of the time, which is remarkable given the very low 

task load nature of the experiment. 
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6. Conclusions 
 

 In highly automated, low task load supervisory control systems, sustaining focused attention for 

prolonged periods is challenging. Operators of these systems are often unable to find effective 

ways to combat consequences of boredom and vigilance decrements that negatively impact their 

performance. A tool for predicting operator performance is necessary to evaluate the effects of 

various design interventions and changes in system parameters oriented to improve operator 

performance. This research was motivated by the need to develop a simulation model to predict 

operator performance in low task load supervisory domains. Based on this model, a design 

intervention to help improve performance of operators who have difficulties sustaining attention 

was designed and evaluated by conducting a human-in-the-loop experiment. 

The simulation model was based on discrete event simulation architecture and took into account 

different attention states of operators, as well as specific tasks that can be serviced when 

interacting with the supervisory system. The design intervention was implemented in the form of 

auditory alerts, the number of which varied over time in a cyclical manner. An experiment 

utilizing a video-game like supervisory interface was conducted to assess the impact of the 

design intervention on operator performance and to validate the human performance model. 

 

6.1 Research Objectives and Findings 

 The primary objective of the research was to determine whether it was possible to develop a 

simulation model to predict operator performance in low task load supervisory domains.  This 

objective was analyzed through the following methods: 
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  Prior work in modeling human performance and supervisory domains was reviewed 

to identify the direction that needed to be taken to develop the model (Chapter 2). 

 A preliminary model was developed based on prior work and data from a previously-

conducted low task load, long duration experiment. The model took into account the 

main variables that were thought to affect operator performance (Chapter 3). 

 The model was verified and replicative validation was established via a historical data 

set (Chapter 4). 

 Predictive validation was established by conducting a long-duration low task load 

experiment (Chapter 5). 

  The review of prior work in Chapter 2 motivated this research by revealing the 

difficulties experienced by operators of low task load supervisory control systems and the 

research gaps that exist in predicting operator performance in lieu of these difficulties. To fill in 

these gaps, a previously developed DES model of human-UV interaction served as a base model 

to develop a Low Task Load DES (LTL-DES) model. The major constructs of the LTL-DES 

were presented in Chapter 3, along with an explanation of how the model operated.  

To establish replication validation of the model, the results from a previously conducted 

experiment in which a single human operator supervised a group of unmanned vehicles were 

used. By comparing model replications of utilization, number of completed tasks, and 

performance scores to the observed values, validity of the LTL-DES was established.  

To further validate the model, a new long duration, low task load experiment was conducted in 

which operators supervised a group of UVs in a find, track, and destroy mission. Predictive 

validation was established by comparing the predicted and observed values of utilization, 
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performance scores, and the number of completed tasks. The predictions of the model revealed 

the model’s weakness in capturing the full variability of human operators. More specifically, the 

variability in the observed utilization and performance scores was greater than the predicted 

values. Also, the way the model calculates the performance scores was based on the percentage 

of directed and divided attention states and average task wait times, causing the model to 

overestimate the scores of the participants who were distracted very little, but did not perform 

well. In the future, the model needs to take into account the probability of operator error (e.g., 

destruction of friendly targets) to alleviate the overestimation of performance. 

The second objective of this research was to establish whether a design intervention could help 

improve participants’ performance scores and whether predictions of the LTL-DES model were 

accurate. 

The design intervention was designed to imitate the observed attention allocation of a participant 

who performed very well in the previously-conducted experiment. According to the LTL-DES 

model, if the design intervention was successful in prompting participants with difficulties in 

sustaining attention to switch attention in a cyclical fashion, the performance of these 

participants would improve dramatically. To assess the effectiveness of the design intervention, 

as well as validate the predictions of the model, the experiment described in Chapter 5 was 

conducted. The results of the experiment were somewhat unexpected, since none of the 

participants appeared to struggle to sustain attention. This was surprising because the previous 

study revealed the majority of participants had difficulties sustaining attention. For this reason, 

there was no conclusive evidence whether the design intervention could help improve struggling 

operators’ performance or not. For the same reason, predictions of the model with regards to 

performance improvement could not be validated. 
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6.2 Recommendations and Future Work 
 

Although the LTL-DES model shows promising results in predicting operator performance in 

low task load supervisory domains, future investigation is necessary to further evaluate the 

predictive ability of the model. Also, the effects of the design intervention should be further 

examined to fully understand its impact on operator behavior and performance.  

Recommendations for future work are presented based on the research described in this thesis:  

 As described in Chapter 5, participants of the low task load, long duration study were 

highly focused over the course of the experiment. This made the design intervention 

largely unnecessary, since the participants did not need any help sustaining directed 

attention. In the future, a new low task load, long duration study needs to be 

conducted with a new set of participants who have difficulties sustaining focused 

attention to fully evaluate the design intervention. Furthermore, a better selection 

process for participants needs to be developed to reduce the number of participants 

who do not have difficulties sustaining attention over prolonged periods of time.  

 The performance score predictions of the model are based on the percentage of time 

operators spent in directed and divided attention states and on the average task wait 

time in the queue. This relationship yielded good results for the previously conducted 

low task load study. However, as the new low task load study showed, when 

extremely directed participants make errors, the relationship does not hold true. More 

analysis is needed to determine the appropriate metrics to use in predicting operator 

performance. One potential way to address this issue is to include a Bernoulli 

probability in the LTL-DES that models the probability of operator error.   
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 The LTL-DES model cannot provide real-time operator performance predictions 

because it relies on the attentions states of operators to predict performance. The 

option of predicting performance in real-time can be important in that it can help the 

operator of the supervisory system to adjust his behavior accordingly. In the future, 

adapting the model so that it can predict performance in real-time should be 

considered. 

 The auditory alerts that were implemented in the experiment were set a priori and did 

not rely on operator performance or on parameters of the mission. Further analysis 

should be conducted to determine whether it is more appropriate to have auditory 

alerts based on operator interaction pattern, mission tasks, or other parameters that 

might help identify the ―right‖ time for the intervention. 

In conclusion, this research shows that it is possible to model human-system interaction in low 

task load supervisory domains by utilizing queuing-based DES theory. The attention allocation 

of operators and attention switching strategies appear to be critical factors in estimating 

performance of operators. Nevertheless, operator performance variability is very large and must 

be considered by designers of low task load supervisory systems.   

This research also examined the effects of a design intervention to help improve operator 

performance, however, the results were not conclusive whether the intervention was beneficial or 

not. In the future, more research needs to be conducted to assess the effects of various design 

interventions on system performance. 
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Appendix A: Fatigue Models 
 

The Two Process Model is at the core of many models that address fatigue and performance. The 

conceptual assumptions of the model include a linear interaction of homeostatic and circadian 

processes and an exponential sleep inertia component (Achermann, 2004; Borbely & 

Achermann, 1999). 

The Interactive Neurobehavioral Model estimates neurobehavioral performance as determined 

by a linear combination of circadian, homeostatic, and sleep inertia components (Jewett & 

Kronauer, 1999). The predictions of this model include minimum core body temperature, 

alertness level, and performance. The model has been used by NASA and DoD researchers for 

shift/duty scheduling purposes. 

The System for Aircrew Fatigue Evaluation (SAFE) Model was developed mainly for use in 

aviation processes (Belyavin & Spencer, 2004). The model can be described as a combination of 

a cubic trend in time since sleep and a sinusoidal component in time of day. It has been reported 

that UK Civil Aviation used the SAFE model to predict alertness levels during duty periods of 

air traffic controllers (Mallis, Mejdal, Nguyen, & Dinges, 2004). 

The Circadian Alertness Simulator allows for the assessment of fatigue risk based on sleep-wake 

patterns (Moore-Ede et al., 2004). This model is based on the Two Process Model. The output 

includes plots of predicted alertness as a function of time and the impact of naps at different 

times of day. The model does not account for different types of work or other stressors that may 

influence fatigue or alertness. 

The Dynamic Bayesian Network Real-Time Fatigue Model is based on a hierarchical Bayesian 

network and takes into account temperature, light, anxiety, workload, head tilt, gaze, and yawn 

frequency to predict accumulation of fatigue over time (Lan, Ji, & Looney, 2003). 
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Appendix B: Queuing Notation 
 

This notation was developed more than a half century ago (Kendall, 1953) and is still used 

extensively in describing the diverse array of queuing systems. The notation is based on the 

A/B/c/N/K/D format in which the letters represent the following characteristics of the system: 

 A represents the inter-arrival time distribution.  

 B represents the service time distribution. 

 c represents the number of parallel servers. In the LTL-DES, the server represents the 

operator who services tasks. 

 N represents the system capacity. 

 K represents the size of the calling population, i.e., the number of events that can be 

generated. 

 D represents queuing policy 

The most common distributions for A and B are M (Markov or exponential), D (deterministic), Ek 

(Erlang of order k), H (hyper-exponential), PH (phase-type), and G (general). Occasionally, the last 

three letters (N, K, D) will be dropped from the description of the queuing system if the system has 

unlimited capacity and calling population. In some cases, such as M/M/1, M/M/∞, or G/M/1, the 

queuing systems can be analyzed mathematically to yield a limited number of useful performance 

metrics. However, in more general cases (e.g., G/G/1 or G/G/∞), mathematical analysis cannot yield 

useful results, thus simulation models are used to analyze these systems.  

Although it is possible for a human supervisory system to be so simple that it can be analyzed 

mathematically, almost always these systems are so complex that only simulation methods can 

provide information on the system performance. The LTL-DES is considered to be a G/G/1 queuing 

system, since probability distributions characterizing inter-arrival and service types are not restricted 

to the limited number of popular distributions mentioned above. Also, since the LTL-DES models 

situations in which a single operator is involved in operating the system, the number of servers is 

one. Furthermore, as described in section 3.3, each event type in the LTL-DES can have a different 

inter-arrival distribution and arrival processes can be dependent. All of these, make finding a 

mathematical solution for the G/G/1 system extremely challenging, if not impossible. 
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Appendix C: Service and Arrival Time Distributions 
 

Distributions are computed using the log files of the previously-conducted low task load experiment 

(Hart, 2010), as well as the new experiment described in Chapter 5.   

EasyFit™ software package was used. 

 

C.1 Service Time Distributions 
Event Previous Study New Study 

Distribution Parameters Distribution Parameters 

Replan Hour 1 Lognormal Mu=1.2064 
Sigma=0.3549 

Lognormal  Mu=1.1381 
Sigma=0.479 

Hour 2 Lognormal Mu=0.946 
Sigma=0.3341 

Lognormal Mu=1.0283 
Sigma=0.3724 

Hour 3 Weibull Scale=2.5938 
Shape=3.3935 

Lognormal Mu=1.0625 
Sigma=0.2951 

Hour 4 Weibull Scale=3.3653 
Shape=4.1927 

Lognormal Mu=1.1732 
Sigma=0.3162 

Create/Edit Search 
Task 

Hour 1 Lognormal Mu=1.1825 
Sigma=0.235 

Gamma Shape=9.7187 
Scale=0.3166 

Hour 2 Lognormal Mu=0.86791 
Sigma=0.2024 

Gamma Shape=9.5622 
Scale=0.3051 

Hour 3 Lognormal Mu=0.8092 
Sigma=0.1463 

Lognormal Mu=1.0719 
Sigma=0.2561 

Hour 4 Lognormal Mu=0.7271 
Sigma=0.1514 

Gamma Shape=10.411 
Scale=0.2558 

Read/Respond to 
Chat Message 

Hours 1-4 Normal Mu=5 
Sigma=1 

Normal Mu=5 
Sigma=1 

Target 
Identification 

Hours 1-4 Normal Mu=7.4265 
Sigma=2.8619 

Lognormal Mu=1.6954 
Sigma=0.3315 
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C.2 Arrival Time Distributions 
 

Required Events 

Event Previous Study New Study 

Distribution Parameters Distribution Parameters 

Replan Normal Mu=1200 
Sigma=5 

Normal Mu=1200 
Sigma=5 

Add Task Uniform a=800 
b=1500 

Uniform a=900 
b=2100 

Chat Message Uniform a=900 
b=1500 

Uniform a=600 
b=1300 

Target Identification Uniform a=600 
b=900 

Uniform a=500 
b=1200 

 

 

 

Self-imposed Events 

Event Previous Study New Study 

Distribution Parameters Distribution Parameters 

Replan Gamma Shape=7.4276 
Scale=6.618 

Lognormal Mu=3.8481 
Sigma=0.4055 

Add Task Lognormal Mu=4.2035 
Sigma=0.4586 

Lognormal Mu=3.9771 
Sigma=0.3506 

Edit Task Lognormal Mu=7.0593 
Sigma=0.341 

Lognormal Mu=6.2094 
Sigma=0.7461 
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Appendix D: Participant Information 
 

Subject Age Gender 
Military 

Experience 
Gaming Experience  
[1 (low) – 5 (high)] 

1 23 M N 1 

2 20 M N 3 

3 21 F N 2 

4 21 M N 5 

5 20 M N 5 

6 20 F N 1 

7 18 M N 4 

8 21 M N 4 

9 22 M N 1 

 

 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Age 9 18 23 20.67 1.414 

Gaming Experience 9 1.0 5.0 2.889 1.6915 

Valid N (listwise) 9     
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Appendix E: Pre- and Post-experiment Forms 

E.1 Consent Form 
CONSENT TO PARTICIPATE IN  

NON-BIOMEDICAL RESEARCH 

 

Assessing the Impact of Cyclical Attention Switching Strategies in Controlling Multiple Unmanned 
Vehicles 

 

You are asked to participate in a research study conducted by Professor Mary Cummings Ph.D, from the 
Aeronautics and Astronautics Department at the Massachusetts Institute of Technology (M.I.T.). You 
were selected as a possible participant in this study because the expected population this research will 
influence is expected to contain men and women between the ages of 18 and 50 with an interest in 
using computers. You should read the information below, and ask questions about anything you do not 
understand, before deciding whether or not to participate. 

 PARTICIPATION AND WITHDRAWAL 

Your participation in this study is completely voluntary and you are free to choose whether to be in it or 
not. If you choose to be in this study, you may subsequently withdraw from it at any time without 
penalty or consequences of any kind. The investigator may withdraw you from this research if 
circumstances arise which warrant doing so.   

 PURPOSE OF THE STUDY 

The purpose of this research is to study how different attention switching strategies affect performance 
in long duration, low workload scenario in the context of piloting multiple, highly autonomous 
unmanned vehicles. 

 PROCEDURES 

If you volunteer to participate in this study, we would ask you to do the following things: 

 Participate in training on the video game-like interface using a PowerPoint tutorial, complete a 
fifteen-minute practice session where you will control a team of simulated unmanned vehicles 
(UVs). The vehicles you will control will be assigned with the task of finding, identifying, and 
tracking targets in an area of interest, destroying hostile targets, and collaborating with the 
auto-planner to replan schedules. 

 Participate in two four-hour long testing sessions where you will experience a long duration, low 
workload mission. You may complete only one mission per day. You will work alongside two 
other participants to simulate a populated control room, and you will each have your own 
workstations with your own vehicles and territory to control. You will be required to wear a 
wireless headset to receive aural alerts from the interface.  
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 You will be rewarded a score for the each session based on the number of targets you 
successfully find, how long they are successfully tracked thereafter, the percentage of the total 
area of interest is searched, and the time spent to find hostile targets and destroy them. 

 All testing will take place at MIT in room 35-220. 

 Total time: 8 hours and 45 minutes 

  
 POTENTIAL RISKS AND DISCOMFORTS 

There are no anticipated physical or psychological risks in this study. 

 POTENTIAL BENEFITS  

You will gain a deeper sense of appreciation on how much human-UV interaction future unmanned 
systems might require. Also, the results from this study will assist in the design of human-UV interfaces. 

 PAYMENT FOR PARTICIPATION 

You will be paid $150 to participate in the first session and $250 for the second session. You will be paid 
upon completion of your debrief. Should you elect to withdraw in the middle of the study, you will be 
compensated for the hours you spent in the study. An additional $250 Best Buy Gift Card will be 
awarded to the participant with the highest score. 

 CONFIDENTIALITY 

Any information that is obtained in connection with this study and that can be identified with you will 
remain confidential and will be disclosed only with your permission or as required by law. You will be 
assigned a subject number which will be used on all related documents to include databases, summaries 
of results, etc. 

 IDENTIFICATION OF INVESTIGATORS 

If you have any questions or concerns about the research, please feel free to contact the Principal 
Investigator, Mary L. Cummings, at (617) 252-1512, e-mail, missyc@mit.edu, and her address is 77 
Massachusetts Avenue, Room 33-311, Cambridge, MA, 02139.  The investigator is Armen Mkrtchyan. He 
may be contacted at (617) 253-0993 or via email at armen@mit.edu. 

 EMERGENCY CARE AND COMPENSATION FOR INJURY 

If you feel you have suffered an injury, which may include emotional trauma, as a result of participating 
in this study, please contact the person in charge of the study as soon as possible. 

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the provision of, 
emergency transport or medical treatment, including emergency treatment and follow-up care, as 
needed, or reimbursement for such medical services.  M.I.T. does not provide any other form of 
compensation for injury. In any case, neither the offer to provide medical assistance, nor the actual 
provision of medical services shall be considered an admission of fault or acceptance of liability. 
Questions regarding this policy may be directed to MIT’s Insurance Office, (617) 253-2823. Your 
insurance carrier may be billed for the cost of emergency transport or medical treatment, if such 
services are determined not to be directly related to your participation in this study. 
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 RIGHTS OF RESEARCH SUBJECTS 

You are not waiving any legal claims, rights or remedies because of your participation in this research 
study.  If you feel you have been treated unfairly, or you have questions regarding your rights as a 
research subject, you may contact the Chairman of the Committee on the Use of Humans as 
Experimental Subjects, M.I.T., Room E25-143B, 77 Massachusetts Ave, Cambridge, MA 02139, phone 1-
617-253 6787. 

SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE 

 

I understand the procedures described above.  My questions have been answered to my satisfaction, 
and I agree to participate in this study.  I have been given a copy of this form. 

 

________________________________________ 

Name of Subject 

 

________________________________________ 

Name of Legal Representative (if applicable) 

 

________________________________________  ______________ 

Signature of Subject or Legal Representative   Date 

 

SIGNATURE OF INVESTIGATOR  

 

In my judgment the subject is voluntarily and knowingly giving informed consent and possesses the legal 
capacity to give informed consent to participate in this research study. 

 

________________________________________  ______________ 

Signature of Investigator     Date 
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E.2 Pre-experiment Survey 
 

Demographic Survey 

1. Subject number:_____ 
 

2. Age:_____ 
 

3. Gender:      M     F 
 

4. Occupation:______________________________ 
 

if student, (circle one):        Undergrad               Masters PhD 

 

expected year of graduation:_________ 

 

5. Military experience (circle one):  No Yes        If yes, which branch:________ 
 

        Years of service:________ 

 
6. How much sleep did you get for the past two nights? 

 
Last night: 
Night before last: 
 

7. How often do you play computer games?   
 

               Rarely            Monthly            Weekly          A few times a week         Daily  

Types of games played:______________________________________ 
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Boredom Proneness Scale (Farmer & Sundberg, 1986) 
 

1. It is easy for me to concentrate on my activities.  T    |    F 

2. Frequently when I am working I find myself worrying about other things. T    |    F 

3. Time always seems to be passing slowly. T    |    F 

4. I often find myself at “loose ends,” not knowing what to do. T    |    F 

5. I am often trapped in situations where I have to do meaningless things. T    |    F 

6. Having to look at someone’s home movies or travel slides bores me 
tremendously. 

T    |    F 

7. I have projects in mind all the time, things to do. T    |    F 

8. I find it easy to entertain myself. T    |    F 

9. Many things I have to do are repetitive and monotonous. T    |    F 

10. It takes more stimulation to get me going than most people. T    |    F 

11. I get a kick out of most things I do. T    |    F 

12. I am seldom excited about my work. T    |    F 

13. In any situation I can usually find something to do or see to keep me interested. T    |    F 

14. Much of the time I just sit around doing nothing. T    |    F 

15. I am good at waiting patiently. T    |    F 

16. I often find myself with nothing to do-time on my hands. T    |    F 

17. In situations where I have to wait, such as a line or queue, I get very restless. T    |    F 

18. I often wake up with a new idea. T    |    F 

19. It would be very hard for me to find a job that is exciting enough. T    |    F 

20. I would like more challenging things to do in life. T    |    F 

21. I feel that I am working below my abilities most of the time. T    |    F 

22. Many people would say that I am a creative or imaginative person. T    |    F 

23. I have so many interests, I don’t have time to do everything. T    |    F 

24. Among my friends, I am the one who keeps doing something the longest. T    |    F 
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25. Unless I am doing something exciting, even dangerous, I feel half-dead and dull. T    |    F 

26. It takes a lot of change and variety to keep me really happy. T    |    F 

27. It seems that the same things are on television or the movies all the time; it’s 
getting old. 

T    |    F 

28. When I was young, I was often in monotonous or tiresome situations. T    |    F 
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Personality Survey
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E.3 Post-experiment Survey 
 

1. How confident were you about the actions you took? 
 

Not Confident   Somewhat Confident   Confident   Very Confident   Extremely Confident  

 

2. How did you feel you performed? 
 

 Very Poor           Poor          Satisfactory         Good          Excellent 

 

3. How busy did you feel during the mission? 
 

Idle         Not Busy       Busy            Very Busy        Extremely Busy 

 

 

4. Did you feel distracted at any point in the mission?     Yes       No 
 

       If so, please list some of the items or activities that distracted you from the mission: 

 

 

5. Did you pay attention to aural alerts? 
 

     Never         Rarely      Occasionally            Frequently        Always 

 

6. How useful did you find aural alerts in improving your overall performance? 
 
         Not useful       Somewhat Useful       Useful        Very Useful        Extremely Useful 
   

 

7.  Other comments: 
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Appendix F: Video Coding Criteria 
 

1). Directed Attention  
 

The participant appears focused and is only monitoring or interacting with the interface and not 

doing any other task.  

 

2). Divided Attention  

 

The participant has eyes on the interface screen, but multitasks in the following ways.  

2p). Physiological diversions (examples: yawning, eating, fidgeting, stretching, and scratching)  

2s). Social diversions (examples: talking, glancing at each other)  

2c). Cognitive diversions (playing Minesweeper, flash games on the same screen as the 

simulation interface or glancing at the secondary monitor)  

 

3). Distracted Attention  

 

The participant is not paying attention to the interface at all.  

3p). Physiological distractions (examples: sleeping, eating a meal without looking at the 

interface) 

3s). Social distractions (examples: discussions with participants' backs turned to the computer) 

3c). Cognitive distractions (reading a book, using the internet or other applications on the second 

screen, checking email and phone messages without looking back at interface) 
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Appendix G: Attention States, Subjective Metrics, and Personality 

Dimensions 

G.1 Summary of Attention States 
 

 1st session 2nd session Without intervention With intervention 

 Dir. Div. Dis. Dir. Div. Dis. Dir. Div. Dis. Dir. Div. Dis. 

Average 
(%) 

69 22 9 58 27 15 62 27 11 66 22 12 

SD (%) 9 4 6 8 5 6 7 4 4 9 6 6 

Max (%) 88 35 20 89 44 31 88 44 20 82 35 31 

Min (%) 56 9 2 37 4 4 37 9 2 40 4 2 

Maximum and minimum values are based on max and min average values among participants 
Dir. – Directed 
Div. – Divided 
Dis. – Distracted  
SD – standard deviation 
 

 

G.2 Percentages of Directed Attention State in 15 minute blocks 
 

Time  
(min) 

Without 
intervention 

(%) 

With 
intervention 

(%) 

0-15 80.2 85.8 

15-30 72.1 84.1 

30-45 64.2 72.4 

45-60 65.6 63.2 

60-75 56.6 66.4 

75-90 69.6 68.6 

90-105 65.1 68.4 

105-120 56.4 59.9 

120-135 51.3 55.1 

135-150 58.1 61.8 

150-165 53.7 60.7 

165-180 62.7 53.8 

180-195 59.0 57.6 

195-210 55.9 66.6 

210-225 66.9 64.1 

225-240 59.9 59.7 
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G.3 Comparison of Percentages of Directed Attention State across the Two 

Scenarios 
 

 

Paired Samples Test 

  Paired Differences 

t df 

Sig. (2-

tailed) 

   

  Mean Std. Deviation Std. Error Mean 

Pair 1 0-15 -5.61222 18.38506 6.12835 -.916 8 .387 

Pair 2 15-30 -11.99669 17.33732 5.77911 -2.076 8 .072 

Pair 3 30-45 -8.20188 29.19385 9.73128 -.843 8 .424 

Pair 4 45-60 2.39807 32.96419 10.98806 .218 8 .833 

Pair 5 60-75 -9.81104 19.94509 6.64836 -1.476 8 .178 

Pair 6 75-90 .97673 27.29894 9.09965 .107 8 .917 

Pair 7 90-105 -3.34828 20.27686 6.75895 -.495 8 .634 

Pair 8 105-120 -3.48650 26.82746 8.94249 -.390 8 .707 

Pair 9 120-135 -3.69473 18.91837 6.30612 -.586 8 .574 

Pair 10 135-150 -3.80747 29.55629 9.85210 -.386 8 .709 

Pair 11 150-165 -7.00088 28.71627 9.57209 -.731 8 .485 

Pair 12 165-180 8.87039 24.07549 8.02516 1.105 8 .301 

Pair 13 180-195 1.33347 18.57846 6.19282 .215 8 .835 

Pair 14 195-210 -10.61942 31.31460 10.43820 -1.017 8 .339 

Pair 15 210-225 2.85599 21.88186 7.29395 .392 8 .706 

Pair 16 225-240 4.14953 27.16212 9.05404 .458 8 .659 

 

Using Bonferroni’s adjustment, a statistical difference between the percentages of directed attention 
states across the two scenarios can be established if |t(8)|>4.169. According to the above table, no 
statistical difference exists. 
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G.4: Descriptive Statistics of Subjective Metrics 
 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Confidence – without 

intervention 

9 2.0 5.0 3.889 1.2693 

Confidence – with 

intervention 

9 2.0 5.0 3.556 1.2360 

Attention to alerts without 

intervention 

9 4.0 5.0 4.667 .5000 

Attention to alerts - with 

intervention 

9 4.0 5.0 4.778 .4410 

Performance - without 

intervention 

9 3.0 5.0 4.111 .7817 

Performance - with 

intervention 

9 2.0 5.0 4.000 1.0000 

Busyness - without 

intervention 

9 1.0 3.0 2.222 .6667 

Busyness - with intervention 9 1.0 3.0 2.444 .7265 

Usefulness of alerts - without 

intervention 

9 1.0 5.0 3.778 1.3944 

Usefulness of alerts - with 

intervention 

9 2.0 5.0 3.667 1.0000 

Valid N (listwise) 9     
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G.5 Wilcoxon Signed Rank test of subjective data 
Comparison between self-rated performance, busyness, confidence, attention to alerts and usefulness 
of alerts between the scenario without the design intervention and with the design intervention. 

Test Statistics 

 
Performance 
self- rating 

Busyness  

self-rating 
Usefulness of 
alerts self-rating 

Confidence self-
rating 

Attention to alerts 
self-rating 

Z -1.000 -.816 -.276 -1.732 -.447 

p-value .317 .414 .783 .083 .655 

 

 

 

G.6 NEO Five Factor Inventory results on a scale of 25 to 75 

 

Subject Neuroticism Extraversion Openness Agreeableness Conscientiousness 

1 37 67 54 25 40 

2 53 56 54 45 48 

3 52 55 70 40 48 

4 50 61 62 57 60 

5 53 59 65 48 46 

6 62 43 60 37 33 

7 40 58 60 52 46 

8 38 58 46 25 51 

9 44 50 54 48 33 
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G.7 Descriptive Statistics of NEO Five Factor Inventory Survey 
 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Personality - Neuroticism 9 37.0 62.0 47.667 8.4113 

Personality - Extraversion 9 43.0 67.0 56.333 6.7823 

Personality - Openness 9 46.0 70.0 58.333 7.1414 

Personality - Agreeableness 9 25.0 57.0 41.889 11.2522 

Personality - 

Conscientiousness 

9 33.0 60.0 45.000 8.6168 

Valid N (listwise) 9     

 

G.8 Personality Dimension Comparisons with the Theoretical Mean 

One-Sample Test 

 Test Value = 50                                       

 

 

95% Confidence 

Interval of the 

Difference 

 

t df Sig. (2-tailed) 

Mean 

Difference Lower Upper 

Personality - Neuroticism -.832 8 .429 -2.3333 -8.799 4.132 

Personality - Extraversion 2.801 8 .023 6.3333 1.120 11.547 

Personality - Openness 3.501 8 .008 8.3333 2.844 13.823 

Personality-  Agreeableness -2.163 8 .063 -8.1111 -16.760 .538 

Personality - 

Conscientiousness 

-1.741 8 .120 -5.0000 -11.623 1.623 
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G.9 Spearman’s Personality Dimensions and Performance Score Correlations 

Correlations 

   Performance 
score (without 
intervention) 

Performance 
score (with 

intervention) 

Spearman's rho Personality-Neuroticism Correlation Coefficient .276 -.418 

Sig. (2-tailed) .472 .262 

N 9 9 

Personality-Extraversion Correlation Coefficient -.025 .243 

Sig. (2-tailed) .949 .529 

N 9 9 

Personality-Openness Correlation Coefficient .247 .162 

Sig. (2-tailed) .522 .678 

N 9 9 

Personality-Agreeableness Correlation Coefficient -.050 .168 

Sig. (2-tailed) .897 .666 

N 9 9 

Personality-
Conscientiousness 

Correlation Coefficient .641 .489 

Sig. (2-tailed) .063 .181 

N 9 9 
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G.10 Spearman’s Personality Dimensions and Directed Attention State Correlations 

 

Correlations 

   Directed –with 

intervention 

Directed –without 

intervention 

Spearman's rho Personality - Neuroticism Correlation Coefficient -.243 -.611 

Sig. (2-tailed) .529 .081 

N 9 9 

Personality - Extraversion Correlation Coefficient -.209 -.033 

Sig. (2-tailed) .589 .932 

N 9 9 

Personality - Openness Correlation Coefficient -.417 -.264 

Sig. (2-tailed) .264 .493 

N 9 9 

Personality - Agreeableness Correlation Coefficient .269 .160 

Sig. (2-tailed) .484 .682 

N 9 9 

Personality - 

Conscientiousness 

Correlation Coefficient .177 .118 

Sig. (2-tailed) .648 .762 

N 9 9 
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Appendix H: BPS Scores, Correlations, and Utilization 

H.1 Utilization & Boredom Proneness Scale (BPS) Score on a scale of 0 to 28 
 

Subject # BPS Score Utilization - without 
intervention (%) 

Utilization - with 
intervention (%) 

1 10 12.6 10 

2 8 22.9 22.3 

3 7 10.4 9.5 

4 4 21.1 18.6 

5 4 8.3 11.4 

6 11 15.7 17 

7 4 13.7 16.7 

8 16 11.9 12.8 

9 6 13.6 11.5 

 

H.2 Utilization Descriptive Statistics 

 

 N Minimum Maximum Mean Std. Deviation 

Utilization – without 

intervention 

9 8 23 14.47 4.778 

Utilization – with 

intervention 

9 10 22 14.42 4.408 

Valid N (listwise) 9     
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H.2 Pearson’s BPS score and performance score correlations 
 

Correlations 

  BPS Score 

Performance 
score (without 
intervention) 

Pearson Correlation .346 

Sig. (2-tailed) .362 

N 9 

Performance 
score (with 

intervention) 

Pearson Correlation .188 

Sig. (2-tailed) .629 

N 9 

 

 

H.3 Spearman’s BPS score and directed attention state correlations 
 

                                                Correlations 

   Boredom 

Proneness 

Spearman's rho Directed attention –  

with intervention 

Correlation 

Coefficient 

-.017 

Sig. (2-tailed) .965 

N 9 

Directed attention-  

without intervention 

Correlation 

Coefficient 

Sig. (2-tailed) 

N 

-.068 

.862 

9 
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